
Tempas Script Language

Tempas has a built in scripting C like scripting language with some C++ like member
functions. Since many users of Tempas might be familiar with Digital Micrograph (DM)
by Gatan Inc., there has been an effort made to make much of the scripting functionality
of DM available in Tempas. Thus while many functionalities have alternate function
names and arguments, in most cases there will be a DM syntax compatible function
available. This is so that many DM scripts can be directly translated to Tempas with
minimal effort. There is a basic difference in the syntax between DM and MT scripting
when subroutines are used, but the difference is rather trivial and is explained below.

When using subroutines, the main entry point must have the routine main() declared as in

main() {
 number x = 10
 number y = 5
 number z = test(x,y)
 print(z)
}
int test(number x, number y) {
 return (x + y)
}

If there are no function / subroutine calls, then one can use either
main() {
 number x = 10
 number y = 5
 number z = x + y
 print(z)
}

or simply

number x = 10
number y = 5
number z = x + y
print(z)

without the main() { …. } declaration

This document parallels the DM scripting documentation such that differences and
compatible syntax are clearly described.

There are some major differences between the scripting in DM and MT as far as the
support of HRTEM simulation is concerned. MT allows the user to script the simulation.

At this point not all aspects of the simulation can be controlled, but this will change with
further development. Functions marked with an * are DM functions that are not (yet)
implemented in Tempas.

EXECUTING THE SCRIPT: Execution of the script is done by pressing the “Enter”
key when the Script window has keyboard focus. This is fn+Return on a MacBook or
MacBook Pro. While the above is still true, the Script Window has now gained a “Run”
button which starts the script. The “Run” button changes to a “Stop” button when the
script is running.

Language Syntax
The Tempas scripting language is very similar to the syntax of the “C” programming
language. The language is fairly simple, but is still quite powerful as in that it supports
such types as “Image” , “ImageStack”, “Microscope”… and so on as built in types. In
many respects the types correspond to the type “Class” as used in C++ as they have built
in “member functions” that operate on the type.
The language is case insensitive such that number, Number, NumBer etc. are all
interpreted as the lower case type number

Types	
int , short or bool : Integer number
Number, float : Real number
ComplexNumber or Cmplx : Complex number {x,y}
String : Holds a string like “This is a String”
Image : a 2D Image, Height (or)Width can be 1
ComplexImage : a Complex Image of the above
Image3D : a 3D Volume “Image” of (width,height,depth)
ComplexImage3D : a Complex Image3D of the above
ImageStack : a “stack” of Images of any number
Simulation : an instance of a “Simulation”
Microscope : an instance of a “Microscope”
Vector : a Vector of real or complex numbers
Matrix : a Matrix (ncols,nrows) of real or complex numbers
File : a “File” that can be written to

The language allows the use of the following type names
bool
short
int
float
“bool”, “short” and “int” are all Integers (int) while the type “number” is a real number
(float). The built in constants “True” , “False”, “Yes” ,“No”, “On” and “Off” (not case
sensitive) correspond to the numbers 1 and 0 respectively. The constant π can be

expressed either as just “Pi” or as a function pi(). The constant “e” is expressed as a
function exp(..).

Comments at the end of lines are specified using “//”

Multiple lines comments can be started and ended by a pair of /* and */
Take must be taken to not have other such pairs within the outer set.
Example
/*
number i
Image testImage = NewImage(512,512)
Image anotherImage(512,512,sin(2*pi*icol/128)+cos(2*pi*irow/64))
*/

The three lines in the middle will be ignored as if they were not present.

Arrays	
The scripting language supports arrays of Types
Hence one can write

number x[100] Declares x to hold 100 numbers. Each element is indexed as x[i]
Image img[5] Declares 5 “Pointers” to Images. Each Image must be created

separately, using NewImage or something similar
String str[40] Declares 40 empty strings
etc.

The syntax allows

x[0] = 5
x[1] = x[0]
int i
number x[100],y
image img[2],img2
for(int i=0; i < 100; i++) x[i] = sin(2*pi*i/64)
img[0] = NewImage(“name”,512,512)
img[1] = img[0]
str[0] = “Hello there”
str[1] = str[0]
y = img2[3,5] // y is assigned the value of the pixel at position [3,5]
y = img[1].getpixel(3,5)
and so on.

Control	loops	key	words	
for , do , while , continue , break

Examples. for:
number x,y // Declares the two variables x and y
number a = 10.2 , b = -3.5 // Declares a and b and sets a to 10.2 and b to -3.5
//

--
// Initializes x to 0, executes the loop as long as x is less than 10
// and at the end of the loop increments x with 1
// The syntax x++ is equivalent to x = x + 1
//

--
for (x = 0; x < 10; x++) {

y = a*x + b // Defines a line segment
}

// Alternatively one could have done something like this
// Statements between /* … */ are not executed. Treated as comments
number x[10],y[10]
for (int i = 0;i < 10; i++) {

/* y = slope * x + intercept */
y[i] = a*x[i] + b

}
// or
for (x = 0; x < 10;) {

y = a*(x++) + b // here x is incremented after evaluating the
expression

// y = a*(++x) + b ; here x is incremented before evaluating the
expression
}

do and while:
number x[10],y[10] // Declares the two arrays x and y of real numbers
number a = 10.2 , b = -3.5 // Declares a and b and sets a to 10.2 and b to -3.5
int i = 0
do {

y[i] = a*x[i] + b // Defines a line segment
i++

} while (i < 10)

while:
number x[10],y[10] // Declares the two arrays x and y of real numbers
number a = 10.2 , b = -3.5 // Declares a and b and sets a to 10.2 and b to -3.5
int i = 0
while (i < 10) {

y[i] = a*x[i] + b // Defines a line segment
i++

}

Use of “break” and “continue”
break:
number x,i
for (i = 0; i < 10; i++) {

x = i
if (x == 5) break // Break out of the loop if x is equal to 5

}

continue:
number x,i
for (i = 0; i < 10; i++) {

if (i == 5) continue // Do not execute the next step(s) and go to
x = 2*i // top of the loop (next cycle)

} // x = 2* i except for when i is equal to 5

Library	Functions	
Library functions are a number of predefined functions that operate on numbers, strings
and images and image-volumes(Image3D) .

Library functions operating on image]/image3D usually take the image(3D) of interest as
an argument and returns an instance of the “result”, leaving the argument unchanged.

An example of the use of a predefined function is FFT. The function takes an image as an
argument and returns the Fourier Transform of the argument as a new image.
Usage could be

Image ftimg = fft(img) // Returns the Fourier Transform of the image “img”,
// “ftimg” is assigned to the return image
// The argument “img”is left unchanged

Image rotImg = Rotate(img,45) // Makes a copy of “img” and rotates
// the copy 45 deg. anti-clockwise
// Returns the rotated image and
// leaves “img” unchanged

Member	Functions	
Member functions are functions that operate on an instance of a variable type.
An example of this would be the various functions that belong to the variable type
“Image”. The member functions operate directly on “itself”. Thus while many library
return a new image resulting from an operation on a copy of its argument, the member
function will change itself and return nothing (except when specifically noted).
Thus if one wanted to take the Fourier transform of an image using a member function,
this would be

img.fft() // Take the Fourier Transform of itself
img.rotate(45) // Rotate oneself 45 degrees anti-clockwise

Built-in	Implied	loop	keywords	(follows	the	use	in	DM	and	clearly	
inspired	by	DM)	
icol // The index of the column in an implicit loop over entire image
irow // The index of the row in an implicit loop over entire image
iradius // The value of the radius in an implicit loop over entire image
itheta // The value of the angle in an implicit loop over entire image
iplane // The index of the plane in an implicit loop over entire image3D
iwidth // The width of the image while within an implied loop
iheight // The height of the image while within an implied loop
idepth // The depth of the image while within an implied loop
ipoints // The number of points of the image while within an implied loop
ipixels // The number of points of the image while within an implied loop

The built in loop key words are incredibly powerful and save an enormous amount of
computing time. They should always be used whenever possible.

Whenever one wants to do a loop over the entire image
such as

number i,j,value
number width = img.GetWidth()
number height = img.GetHeight()
for (j = 0; j < height; j++) {

for (i = 0; i < width ; i++) {
value = Some Expression
img[i,j] = value

}
}

and “Some Expression” can be expressed in terms of icol, irow, iradius etc.. , one should
use these implied loops.
For instance the Expression

img = sin(2*pi*icol/32)+sin(2*pi*irow/32)

Is equivalent to evaluating the following.

number i,j,x,y
number width = img.GetWidth()
number height = img.GetHeight()
for (j = 0; j < height; j++) {

y = sin(2*pi*j/32)
for (i = 0; i < width ; i++) {

x = sin(2*pi*i/32)
img[i,j] = x+y
// or one could write

// SetPixel(img,i,j,x+y)
// img.SetPixel(i,j,x+y)

}
}

Similarly

img = exp(-iradius*iradius/64) or img = exp(-iradius**2/64)

Is equivalent to

number i,j,x,y,val
number width = img.GetWidth()
number height = img.GetHeight()
for (j = 0; j < height; j++) {

y = j – height/2
for (i = 0; i < width ; i++) {

x = i - width/2
val = exp(-(x**2+y**2)/64) // iradius = sqrt(x*x+y*y)
SetPixel(img,i,j,val)

}
}

The first expressions take a fraction of a second to compute, while the second approach
can take minutes. Thus you should always use the expressions icol and irow whenever
possible when you want to do a loop over the entire image pixel by pixel.
It will be possible if the pixel value at (i,j) is an expression of i and j (icol and irow).
The power of the use of icol and irow cannot be overestimated. When using the type
Image3D, iplane takes on the third dimension (z)

Image3D vol(32,32,32,iplane) // Creates an image-volume of size 32*32*32
//where each “plane” in the z-dimension is
// set to the value of its z- index (0 - 31)

Graphing Options
1 Dimensional data can be visualized using the functions

graphxy(…)

plot(…)

and implicitly by displaying Images 1D (default) or 2D (setting the display style)

The code……

Image sineWave(512,1,sin(2*pi*icol/128))
sineWave.show()
…

will result in the following output

The same output could be produced by
…..
number y[512]
for(int i =0; i < 512; i++) {

y[i] = sin(2*pi*i/128)
}
plot(y)
…..
An example of plotting y vs x is the following…

number x[512],y[512],sigma = 40
int i
for(i = 0; i < 512; i++) {

x[i] = 2*i
y[i] = exp(-(x[i]/2-256)**2/sigma**2)

}
plot (x,y)

and…

number y[512],x,sigma=30
int ndx,i
for(i = 0; i < 10000; i++) {

x = GaussianRandom(sigma)
ndx = x + 256
if (ndx < 0) continue
if (ndx > 511) continue
y[ndx]++

}
graphxy (y)

and….
Image y(512,4)
number x[4]

Right Clicking in the Graph
Window brings up a window for
setting some further display
options

for(int i = 0; i < 512;i++) {
for(int j=0; j < 4; j++) {

x[j] = sin(2*pi*i/((j+1)*128))
y[i,j] = x[j]

}
}
y.setName(“Sine-Waves”)
// 1 = rasterimage, 2 = RGB, 3 = SurfacePlot,
// 4 = Lineplot, 5 = Table, 6 = ArgandPlot,
// 7 =ComplexLinePlot
y.setDisplayType(4)
y.show()

Scripting Reference

Real Numbers / Integer Numbers

Declaration

number x
number x(3.4) Declares x and sets it to the

value 3.4
int ix Declares ix and sets it to
int ix(3.4) the value 3

Operators (operating on numbers), read Integer when appropriate

Name Summary

! Logical NOT operator for a
real number

!= Inequality operator for real
numbers

&& Logical AND operator for real
numbers

* Multiply operator for real
numbers

** Exponentiation operator for
real numbers

*= Multiply and assign operator
for real numbers

+ Addition operator for real
numbers

++ Increment operator for a real
number

+= Add and assign operator for
real numbers

- Negation operator for a real
number

- Subtraction operator for real
numbers

-- Decrement operator for real
numbers

-= Subtract and assign operator
for real numbers

/ Division operator for real
numbers

/= Divide and assign operator
for real number

< Less than operator for real
numbers

<= Less than or equal operator
for real numbers

= Assignment operator for real
numbers

== Equality operator for real
numbers

> Greater than operator for
real numbers

>= Greater than or equal
operator for real numbers

? Arithmetic if operator for
real numbers

|| Logical OR operator for real
numbers

Functions (operating on numbers)

Name Summary

abs Calculates absolute value of
a real number

acos Calculates the arccosine of a
real number

acosh Calculates the hyperbolic
arccosine of a real number

AiryAi Calculates the Airy Ai
function

AiryBi Calculates the Airy Bi
function

asin Calculates the arcsine of a
real number

asinh Calculates the hyperbolic
arcsine of a real number

atan Calculates the arctangent of
a real number

atan2 Calculates the arctangent of
y/x for real numbers, real
images or a complex image

atanh Calculates the hyperbolic
arctangent of a real number

BesselI Calculates the general Bessel

I function
BesselJ Calculates the general Bessel

J function (0 , 1 and N)
BesselK Calculates the general Bessel

K function
BesselY Calculates the general Bessel

Y function of orders (0,1 and
n)

Beta Calculates the beta function
BinomialCoefficient Calculates the binomial

coefficient nCk
BinomialRandom* Calculates a random number

with binomial distribution
clip Clip real number to be in a

range
cos Calculates the cosine of a

real number
cosh Calculates the hyperbolic

cosine of a real number
distance Calculates the pythagorean

theorem
erf Calculates the error function
erfc Calculates the complement of

the error function
exp Calculates the exponential of

a real number
exp1 Calculates the exponential

and of a real number and
subtracts 1

exp10 Calculates 10 raised to a
real number

exp2 Calculates 2 raised to a real
number

ExponentialRandom Calculates a random number
with exponential distribution

Factorial Calculates the factorial of a
real number

Gamma Calculates the gamma of a
real number

GammaP Calculates the incomplete
gamma function

GammaQ Calculates the complement of
the incomplete gamma function

GammaRandom* Calculates a random number
with gamma distribution

GaussianRandom Calculates a random number

with gaussian distribution
LegendrePolynomial Calculates the Legendre

polynomial function
log Calculates the logarithm of a

real number
log1 Calculates the logarithm of a

real number and adds 1
log10 Calculates the logarithm base

10 of a real number
log2 Calculates the logarithm base

2 of a real number
LogGamma Calculates the log gamma of a

real number
max Calculates the maximum of two

real numbers
Maximum Calculates the maximum of a

given list of real numbers
Median Calculates the median of a

given list of real numbers
min Calculates the minimum of two

real numbers
Minimum Calculates the minimum of a

given list of real numbers
mod Calculates the integer

modulus for real numbers
Pi Returns an approximation of π
PoissonRandom Calculates a random number

with poisson distribution
Random Calculates a random number

with uniform distribution
Remainder Calculates the integer

remainder for real numbers
Round Rounds a real number to the

nearest integer
Sgn Calculates the sign of a real

number
sin Calculates the sine of a real

number
sinh Calculates the hyperbolic

sine of a real number
SphericalBesselJ Calculates the spherical

Bessel J function
SphericalBesselY Calculates the spherical

Bessel Y function
sqrt Calculates the square root of

a real number

tan Calculates the tangent of a
real number

tanh Calculates the hyperbolic
tangent

toDeg Returns the value of the
argument(radians) in Degrees

toRad Returns the value of the
argument(degrees) in radians

Trunc Truncates a real number to an
integer

UniformRandom Calculates a random number
with uniform distribution

*Not yet implemented

Pre Defined Constants

Name Summary

true Evaluates to 1
false Evaluates to 0
yes Evaluates to 1
no Evaluates to 0
on Evaluates to 1
off Evaluates to 0
pi Evaluates to “pi” = 3.14…

Complex Numbers

Declaration

complexnumber z Declares a complex number
variable z set to (0,0)

cmplx z cmplx is equivalent to
complexnumber

cmplx z(1.0) Declares z as a complex
number and sets it equal to
(1.0 + i0.0)

cmplx z(1.0,0.3) Declares z as a complex
number and sets it equal to

(1.0 + i0.3)

cmplx z(cis(pi/4)) Declares z as a complex
number and sets it equal to
exp(i*pi/4) (cos(pi/4) +
i*sin(pi/4))

Operators

Name Summary

!= Inequality operator for
complex numbers

* Multiply operator for complex
numbers

** Exponentation operator for
complex numbers

*= Multiply and assign operator
for complex numbers

+ Addition operator for complex
numbers

+= Add and assign operator for
complex numbers

- Negation operator for a
complex number

- Subtraction operator for
complex numbers

-= Subtract and assign operator
for complex numbers

/ Division operator for complex
numbers

/= Divide and assign operator
for complex numbers

= Assignment operator for
complex numbers

== Equality operator for complex
numbers

? Arithmetic operator for
complex numbers

Functions

Name Summary

abs() Calculates the absolute value
of a complex number

cis() Calculates a unit vector in
the complex plane cis(arg) =
(cos(arg), sin(arg))

complex() Creates a complex number from
two real numbers

conjugate() Calculates the conjugate of a
complex number

cos() Calculates the cosine of a
complex number

cosh() Calculates the hyperbolic
cosine of a complex number

exp() Calculates the exponential of
a complex number

imaginary() Returns the imaginary portion
of a complex number as a real
number

log() Calculates the logarithm of a
complex number

modulus() Calculates the modulus of a
complex number

norm() Calculates the norm of a
complex number

Phase() Calculates the phase of a
complex number

Polar() Calculates the polar
representation of a
rectangular complex number

real() Returns the real portion of a
complex number

Rect() Calculates the rectangular
representation of a polar
complex number

sin() Calculates the sine of a
complex number

sinh() Calculates the hyperbolic
sine of a complex number

sqrt() Calculates the square root of
a complex number

tan() Calculates the tangent of a
complex number

tanh() Calculates the hyperbolic
tangent of a complex number

Complex Number Member Functions

Functions

Name Summary

set() Sets the x,y pair of the
complex number

real() returns the real part of the
complex number or sets the
value of the real part if an
argument is given.

imag() returns the imaginary part of
the complex number or sets
the value of the imaginary
part if an argument is given.

x() returns the real part of the
complex number or sets the
value of the real part if an
argument is given.

y() returns the imaginary part of
the complex number or sets
the value of the imaginary
part if an argument is given.

setX() Equivalent to x(arg)
setY() Equivalent to y(arg)
phase() returns the phase in radians

of the complex number
angle() returns the phase in degrees

of the complex number
modulus() returns the modulus of the

complex number
modsq() returns the modulus square of

the complex number
conjugate() returns the complex conjugate

of the complex number

Example:

ComplexNumber c(2,3) // Declares and initializes complex c
number x = c.x() // x = 2
number y = c.y() // y = 3

c.x(10) // Sets the real part to 10
c.y(4) // Sets the imaginary part to 4
c.setX(10) // Sets the real part to 10
c.setY(4) // Sets the imaginary part to 4

c.set(4,6) // Sets the complex number equal to (4,6)

cmplx d = c.conjugate()

number phase = d.phase()

Real Images

Declaration

image img Declares a pointer to an
image which must be created
or assigned

image img(ncols,nrows) Declares and creates a real
image of size ncols by nrows
Width=ncols , Height=nrows

image img(512,512,exp(-iradius**2/64))

Declares and creates a real
image of size 512 by 512,
assigning it to a Gaussian of
sigma 8 (exp (- (r/8)**2)

Operators

Name Summary

* Multiply operator for real
images

** Exponentiation operator for
real images

*= Multiply and assign operator
for real images

+ Addition operator for real
images

++ Increment operator for a real
images

+= Add and assign operator for
real images

- Negation operator for a real
images

- Subtraction operator for real
images

-= Subtract and assign operator
for real images

/ Division operator for real
images

/= Divide and assign operator
for real images

< Less than operator for real
images

<= Less than or equal operator
for real images

= Assignment operator for real
images

== Equality operator for real
images

> Greater than operator for
real images

>= Greater than or equal
operator for real images

? Arithmetic if operator for
real images

[] Image region expression

Library Functions

Name Summary

abs Returns a real image
containing the absolute
values of a real image

acos Returns a real image
containing the arccosine of a
real image

acosh Returns a real image
containing the hyperbolic
arccosine of a real image

asin Returns a real image
containing the arcsine of a
real image

asinh Returns a real image
containing the hyperbolic
arcsine of a real image

atanh Returns a real image
containing the hyperbolic
arctangent of a real image

ceiling Sets all values larger than a
given value to the given
value

clip Sets all values smaller than
a given value to the value
and all values larger than a
given value to the given
value

cos Returns a real image
containing the hyperbolic
cosine of a real image

cosh Returns a real image
containing the cosine of a
real image

DotProduct Calculates the dot product of
two real image expressions

exp Returns a real image
containing the exponential of
a real image

exp1 Returns a real image
containing the exponential of
a real image and subtracts 1

exp2 Returns a real image
containing 2**image

exp10 Returns a real image
containing 10**image

ExprSize Sets the physical size of a
real image expression

ExprSize Sets the physical size of a
real image expression

factorial Returns the factorial of an
image (values are rounded to
integers)

floor Sets all values smaller than
a given value to the given
value

log1 Returns an image of the log
of an image after subtracting
1.

log10 Calculates log10 of an image
log2 Calculates log2 of an image
log Calculates the natural

logarithm of an image
max Finds the maximum of a real

image expression
max Finds the maximum value and

position for a real image
expression

mean Calculates the mean of a real
image expression

MeanSquare Calculates the mean square of
a real image expression

median Calculates the median of a
real image expression

min Finds the minimum value and
position for a real image
expression

min Finds the minimum of a real
image expression

norm Returns an image of the norms
of an image (xi-squared)

Polynomial Calculates a polynomial
expansion using a real image
expression

Pow Returns a real image
containing image**x

pow2 Returns a real image
containing 2**image

pow10 Returns a real image
containing 10**image

product* Calculates the product of a
real image expression

RMS Calculates the RMS of a real
image expression

Round Rounds all values to the
nearest integer

sum Calculates the sum of a real
image expression

sigma Returns the standard
deviation of an image

sin Returns a real image
containing the sine of a real
image

sinh Returns a real image
containing the hyperbolic
sine of a real image

sqrt Returns a real image
containing the square root of
a real image

sq Returns a real image
containing the square of a
real image

square Returns a real image
containing the square of a
real image

stdv Returns the standard
deviation of an image

tan Returns a real image
containing the tangent of a
real image

tanh Returns a real image
containing the hyperbolic
tangent of a real image

TimeBar” Displays a timebar while
evaluating real image
expression

Trunc Truncates all real values to
the integer part

Variance Returns the variance of the
image

Vectorlength Returns the square root of
the sum of all pixels squared

Warp Calculates bilinear

interpolated value within a
real image

*Not yet implemented

Complex Images

Declaration

compleximage img Declares a “Pointer” to a
complex image which must be
created or assigned

compleximage img(ncols,nrows) Declares and creates a
complex image of size ncols
by nrows
Width=ncols , Height=nrows

Operators

Name Summary

* Multiply operator for complex
images

** Exponentiation operator for
complex images

*= Multiply and assign operator
for complex images

+ Addition operator for complex
images

+= Add and assign operator for
complex images

However it is not necessary in most instances to declare an image
to be complex. One can also declare it as type Image.
The construct…

Image img(512,512)
Cmplx z = complex(3,2)
img = z // Will convert the Image from being real to complex

- Negation operator for a
complex images

- Subtraction operator for
complex images

-= Subtract and assign operator
for complex images

/ Division operator for complex
images

/= Divide and assign operator
for complex images

= Assignment operator for
complex images

== Equality operator for complex
images

? Arithmetic if operator for
complex images

Functions

Name Summary

ComplexConjugate Returns the complex conjugate
of an image

Conjugate Returns the complex conjugate
of an image

Real Returns the real part of an
image

Imaginary Returns the imaginary of an
image

Intensity Returns the modulus square of
a complex image

Phase Returns the phase of a
complex image

Modulus Returns the modulus
(amplitude) of a complex
image

Built in Image Expressions

Name Summary

icol When used in an expression
involving an image, icol will
refer to the index of the

column in the image and there
is an implied loop over all
the elements of an image.
Basically each pixel takes
the value of the column
number of the pixel.

irow When used in an expression
involving an image, irow will
refer to the index of the row
in the image and there is an
implied loop over all the
elements of an image. Each
pixel takes the value of the
row number of the pixel.

iplane When used in an expression
involving a 3D image, iplane
will refer to the index of
the depth in the 3D image and
there is an implied loop over
all the elements of an image.
Each voxel has the value of
the plane number of the
voxel.

iradius When used in an expression
involving an image, iradius
will refer to the value of
sqrt((I-W/2)* (I-W/2)+(J-H/
2)* (J-H/2)), where I and J
are the column and row index
of the image and W and H are
the width and height of the
image. There is an implied
loop over all the elements of
an image. Each pixel has the
value of the radius of the
pixel.

itheta When used in an expression
involving an image, itheta
will refer to the value of
atan((J-H/2)/(I-W/2)), where
I and J are the column and
row index of the image and W
and H are the width and
height of the image. There
is an implied loop over all
the elements of an image.
Each pixel has the value of
the angle with the x-axis of
the pixel.

iwidth When used in an expression
involving an image, iwidth
will refer to the width of
the image. It’s a constant.

iheight When used in an expression

involving an image, iheight
will refer to the height of
the image. It’s a constant.

idepth When used in an expression
involving a 3D volume image,
idepth will refer to the
depth of the image. It’s a
constant.

ipoints / ipixels When used in an expression
involving an image, ipoints /
ipixels will refer to the
number of pixels in the
image. It’s a constant.

Image Stacks

Declaration

imagestack stack Defines and Creates an empty
image stack

Assignment

imagestack stack Defines the ImageStack
stack = existingStack Sets the stack equal to an

existing image stack

imagestack stack Defines the ImageStack
stack = existing3DImage Sets the stack equal to an

existing 3D image volume

Member functions

Name Summary

AddImage(Image) Adds an image to a stack
DeleteImage(Image) Deletes an image from a stack
FFT(int num) Performs a Fourier transform

on an image on the stack
FFT Performs a Fourier transform

of every image on the stack
GetImage(int Num) Returns an image from a stack
GetnumberOfImages() returns the number of images

in a stack
IFFT(int num) Performs the inverse Fourier

transform on an image in the
stack

IFFT Performs the inverse Fourier
transform of every image on
the stack

Save(String) Saves an image stack as a MRC
file

Volume Images

Declaration / Creation

Image3D img3 Declares a “Pointer” to a 3D
Volume / 3D Image

Image3D img3(32,32,32) Declares and creates an Image
Volume of size 32 by 32 by 32

Image3D img3(32,32,32,exp(-iradius**2/8**2))
Declares and creates an Image
Volume of size 32x32x32 and
assigning it to a “spherical
Gaussian” of sigma 8

Assignment

Image3D img3 Defines the 3D Image
img3 = existingImage3D Sets the Image Volume from an

existing 3D image volume
img3[x1:x2,y1:y2,z1:z2] =
existingImage3D[xx1:xx2,yy1:yy2,zz1:zz2] where

(xx2-xx1) = (x2-x1)
(yy2-yy1) = (y2-y1)
(zz2-zz1) = (z2-z1)

Image3D img3 Defines the 3D Image
img3= existingStack Sets the Image Volume from an

existing image stack

Creation

Name Summary

exprsize3 Function for creating a 3D
Image Volume

Image3D name(width,height,depth) or
Image3D name(width,height,depth,ImageExpression)

Creates the 3D Volume and
assigns the volume to the
image expression

example:
image3d img = exprsize3(256,256,256) // Declares and creates a volume image

// set to the initial value 0
image3d img1 = exprsize3(256,256,256,10) // Declares and creates a volume image

// set to the initial value 10
image3d vol(256,256,256,exp(-iradius**2/20**2))

Member Functions

Name Summary

BeginFill() Starts a fill from
projections

Depth() Returns the depth (z
dimension in pixels) of the
volume image

Display() Displays a 3D (volume) image
EndFill() Ends a fill from projections
FFT() Performs a 3D Fourier

transform of a 3D (volume)
image

FFT2() Performs a 2D Fourier
transform of each image
(plane) of the 3D (volume)
image

FillFromProjection*() Filling the volume image from
a 2D projection

GetImage(int z) Returns a 2D image from a
given position (z) in the
volume image

GetName() Returns the name of the image
GetSize(w,h,d) Returns the width, height and

depth of the volume image
GetVoxel(x,y,z) Returns the value at position

(x,y,z)
Height() Returns the height (y

dimension in pixels) of the
volume image

IFFT() Performs a 3D inverse Fourier
transform of a 3D (volume)
image

IFFT2() Performs a 2D Fourier inverse
transform of each image
(plane) of the 3D (volume)
image

Imaginary() Replaces the volume image
with its imaginary part

Modulus() Transforms the image to the
modulus

Phase() Transforms the image to the
phase

Real() Replaces the volume image
with its real part

Repeat(nx,ny,nz) Repeat the volume image
NX,NY,NZ times

RotateX(angle) Rotate about x clockwise
RotateY(angle) Rotate about y clockwise
RotateZ(angle) Rotate about x clockwise
Save() Saves the volume image as a

MRC file
SetImage(i,image) Sets a 2D image at a given

position (z) in the volume
image

SetName(“name”) Sets the name of the 3D image
SetVoxel(x,y,z,value) Sets the voxel value at

position (x,y,z)
sq() Replaces each pixel (voxel)

with the square of its value
sqrt() Replaces each pixel (voxel)

with the squareroot of its
value

Width() Returns the width (x
dimension in pixels) of the
volume image

*Not yet implemented

Image Data Type

Declaration

image ss
compleximage css

Creating / initializing

Name Summary

Exprsize(width,height,..) Allocates and initializes an
image

realimage(width,height) Creates a real image of a
given size

newimage(width,height) Creates a real image of a
given size

createimage(width,height) Creates a real image of a
given size

createfloatimage(width,height) Creates a real image of a
given size

createcompleximage(width,height) Creates a complex image
of a given size

openimage() opens an existing image file

Example:
A0 = exprsize(512,512,icol) Creates an image with label

a0 and
displays it. The image
contains a ramp where each
pixel has the value of the
column number.

Image ss = newimage(“real image”,512,512)
compleximage css = createcompleximage(“Complex

TestImage”,512,512)

Example:
image ss = openimage(“image.tif”)

Image Member Functions

Functions

Name Summary

ac Replaces a real image with
its autocorrelation

acos Replaces a real with its
arccosine

acosh Replaces a real with its

hyperbolic arccosine
AdjustAngle Adjusts the image so that it

has an angle of 90 degrees.
This is applicable for images
returned from a simulation.
In this case the image
represents a periodic object
and the angle of the unit
cell may be different from 90
deg.

AdjustSampling Adjusts the image so that it
has equal sampling in x and
y. This is applicable for
images returned from a
simulation. In this case the
image represents a periodic
object and the sampling along
the a and b axes may be
different.

Amplitude Replaces a complex with its
amplitude

AnnularHighpassFilter Applies a high pass filter to
an image

AnnularLowpassFilter Applies a low pass filter to
an image

ApplyAnnularMask Applies an annular mask to an
image

ApplyCircularMask Applies a circular mask to an
image

ApplyCosineMask Applies a cosine mask to an
image

ApplyHanningMask Applies a Hanning mask to an
image

ApplyMasksFromImage Applies masks belonging to a
different image onto itself

asin Replaces the image with its
arcsine

asinh Replaces the image with its
hyperbolic arcsine

atan Replaces the image with its
arctan

atan2 Replaces the image with its
arctan

atanh Replaces the image with its
hyperbolic arctan

Autocorrelate Replaces a real image with
its autocorrelation
(equivalent to ac)

bgs Applies a Background Noise
Subtraction Filter on a real
image

cc Replaces a complex image with
its complex conjugate

ccd Corrects for CCD detector bad

pixels in a real image
ceiling Sets all values greater than

maxVal to maxVal
CenterOfMass Returns the value of and

position of the “Center of
Mass”

clip Sets all values greater
smaller than minVal to minVal
and all values greater than
maxVal to maxVal

ConvertToRealSpaceStorage Changes the data storage to
regular real space storage
(x,y)

ConvertToReciprocalSpaceStorage Sets the storage to that
of h,k in reciprocal space.
(h=0,k=0) at position (0,0)

Complexconjugate Replaces a complex image with
its complex conjugate
(equivalent to cc)

ComplexModulusSq This replaces a complex image
with the product of itself
and its complex conjugate. It
is the complex modulus
square. Imaginary part is
zero

Cmsq Equivalent short for
ComplexModulusSq

Conjugate Replaces a complex image with
its complex conjugate
(equivalent to cc)

cos Replaces a real with its
cosine

cosh Replaces a real with its
hyperbolic cosine

Display Displays the image
Displayonlogscale Displays the image on a log

scale
exp Takes the exponential of an

image
exp1 Takes the exponential of a

real image and subtracts the
value 1

exp10 Calculates the 10**image
exp2 Calculates the 2**image
factorial Takes the factorial of each

pixel of an image
fft Takes the Fourier transform

of an image
Fillfromprojection Fills in a 2D image from 1D

projections
Fliphorizontal Flips an image horizontally

(around the vertical axis)
Flipvertical Flips an image vertically

(around the horizontal axis)

floor Sets all values smaller than
minVal to minVal

GaussianLowpassFilter Applies a Gaussian low pass
filter

GaussianHighPassFilter Applies a Gaussian high pass
filter

GetCalibration Returns the calibration of
the image

GetCalibrationunit Returns the calibration unit
of the image

GetGamma Returns the angle associated
with the image

GetLattice Returns the lattice (if
defined) for the image

GetName Return the name of the image
GetPeaklist Returns the peaklist (if

defined) for the image
GetPixel Returns the pixel value for a

given pixel
GetScale Returns the scale/calibration
GetScaleX Returns the scale/calibration

in X
GetScaleY Returns the scale/calibration

in Y
GetSize Returns the width and height

of the image
HasLattice Returns true(1)/false(0) if a

lattice is defined on an
image

HasPeaklist Returns true(1)/false(0) if a
peak list is defined on an
image

Height Returns the height (in
pixels)

HighpassFilter Applies a highpass filter to
the image

Ifft Replaces a complex image in
reciprocal space with its
inverse Fourier transform

Imaginary Replaces a complex with its
imaginary part

Intensity Replaces an image with its
modulus squared

Inverse Sets the Image Values to 1/
Values

Invert Sets the image equal to
-Image

Laplacian Takes the Laplacian of a real
image

Log Takes the natural log of a
real image

Log1 Takes the natural log of a
real image after adding the
value 1

log10 Takes the log10 of a real
image

log2 Takes the log2 of a real
image

Max Returns the maximum of a real
image

Mean Returns the mean of a real
image

Min Returns the minimum of a real
image

Modulus Replaces a complex image with
its modulus

PadWithMean Pads an image with its mean
value to specified dimensions

PadWithZero Pads an image with zero to
specified dimensions

Phase Replaces a complex image with
its phase

pow Replaces the image with
image**factor

pow10 Replaces the image with
10**(image)

pow2 Replaces the image with
2**(image)

Powerspectrum Calculates the Power Spectrum
of an image

Ps Calculates the Power Spectrum
of an image

rccd Corrects for CCD detector bad
pixels in a real image (ccd)

Real Replaces a complex image with
its real part

Removeccddefects Corrects for CCD detector bad
pixels in a real image (ccd)

Repeat Repeats an image by tiling
Resize Resizes an image
RMS Returns the RMS value of a

real image
Rotate Rotates the image by a given

angle anti-clockwise
RotateLeft Rotates anti-clockwise an

image by 90 deg.
RotateRight Rotates clockwise an image by

90 deg.
Round Rounds all values to the

nearest integer
SetBlackWhite Sets the black and white

display limits of an image
SetCalibration Sets the calibration of an

image
SetCalibrationUnit Sets the calibration unit of

an image
SetImageSpace Sets the space (real/

reciprocal) of an image
SetName Sets the name of an image
SetPixel Sets a specified pixel to a

given value
SetScale Sets the scale of an image
Sharpen Applies a Sharpening Filter

to a real image
Shift Shifts the position (0,0) to

a new position (x,y) in the
image

ShiftCenter Shifts the position (0,0) to
the position (W/2,H/2) in the
image

ShiftOrigin Shifts the position (0,0) to
the position (W/2,H/2) in the
image

show Displays an image
sigma Returns the standard

deviation of a real image
sin Replaces a real image with

its sine
sinh Replaces a real image with

its hyperbolic sine
Smooth Applies a Smoothing Filter to

a real image
sobel Applies a Sobel Filter to a

real image
sq Takes the square of an image
sqrt Takes the square root of a

real image
square Takes the square of an image
stdv Returns the standard

deviation of a real image
tan Replaces a real with its

tangent
tanh Replaces a real with its

hyperbolic tangent
thf Applies a Threshold Filter to

a real image
Transpose Transposes an image
ThresholdFilter Applies a Threshold Filter to

a real image
Trunc Truncates the values to its

integer part
Update Updates an image
Variance Returns the variance of the

image
wf Applies a Wiener Filter to a

real image
Width Returns the width (pixels) of

an image
WienerFilter Applies a Wiener Filter to a

real image

Example:

image img = exprsize(256,256,icol)
img.sin()
img.fft()
img.setname(“test”)
img.display()

Example:
// a# as in a0, a1, a10… are automatically assigned as
// images and are displayed by default
a10 = exprsize(256,256,sin(2*pi()*icol/8)*sin(2*pi()*irow/12))
a11 = a10
a11.fft()
a10.setname(“test”)
a11.setname(“Fourier Transform of test”)
a12 = a10[64,64,192,192] // a12 is set to the top,left,bottom,right subregion of a10

Image Creation

Functions

Name Summary

ExprSize Allocates and initializes an
image

RealImage Creates a real image of a
given size

NewImage Creates a real image of a
given size

CreateImage Creates a real image of a
given size

CreateFloatImage Creates a real image of a
given size

CreateComplexImage Creates a complex image of a
given size

OpenImage opens an existing image file

Image imag(width,height,…) Declares and creates an image
of specified dimensions and
optionally assigns it to an
image-expression

Images can also be created and assigned from an array
numbers, a vector and a matrix

Matrix m(100,100)
Vector v(100)
number x[100]
..
..
Image i1,i2,i3
i1 = m // Creates an Image of size(100,100)
i2 = v // Creates an Image of size(100,1)
i3 = x // Creates an Image of size(100,1)

The images are filled with the content of m, v and x
If the images are already created, they must have the
dimensions of m, v and x

Image Management

Functions

Name Summary

cexp Returns a complex image from
two images x and y (real part
= cos(x)) (imaginary part =
sin(x))

cis Returns a complex image from
two images x and y (real part
= cos(x)) (imaginary part =
sin(x))

CloseImage Closes an existing image
Complex Returns a complex image from

two images x (real part) and
y (imaginary part)

CreateComplexImage Creates a complex image of a
given size

CreateFloatImage Creates a real image of a
given size

CreateImage Creates a new image of a
given type

CreateImageFromDisplay Creates an image from the
information in a given window

CreateNewImage Creates a new image of a
given type

CreateRealImage Creates a real image of a
given size

CreateTableFromImage Creates a table from an image

Delete Deletes an image
DeleteImage Deletes an image
DoesImageExist Returns true/false if a given

named image exists
Extract Returns an image by

extracting a region of an
existing image

get2dSize Returns width and height of
an image

getCalibration Returns the calibration of an
image

getCalibrationUnit Returns the calibration unit
of an image

getCalibrationUnitString Returns the calibration unit
of an image

getFrontImage Returns the front image
getHeight Returns the height of an

image
getMagnification Returns the zoom factor of an

image
getNamedImage Returns the image with a

given name
getNumberedImage Returns the image with a

label A#
getScale Returns the scale of an image
getSize Returns the width and height

of an image
getUnitString Returns the calibration unit

of an image
getWidth Returns the width of an image
getZoom Returns the zoom factor of an

image
NewImage Creates a new image
Open Opens a named image file
OpenImage Opens a named image file
OpenWithDialog Opens an image file using a

file selector dialog
PrintImage Prints a given image
RealImage Creates a real image
Resize Resizes an image
saveImage Saves an image
setCalibration Sets the calibration of an

image
setCalibrationUnit Sets the calibration unit of

an image
setMagnification Returns the scale of an image
setName Returns the name of an image
setScale Sets the scale of an image
setUnitString Sets the calibration unit of

an image
setZoom Sets the zoom factor of an

image

Image Processing

Functions

Name Summary

Ac Returns the autocorrelation
of a real image

Align Aligns two images
AlignImages Aligns two images
AlignTwoImages Aligns two images
AnnularHighPassFilter Returns a new image of a high

pass filtered image
AnnularLowPassFilter Returns a new image of a low

pass filtered image
ApplyAnnularMask Returns an image resulting

from the application of an
annular mask to an image

ApplyCircularMask Returns an image resulting
from the application of an
annular mask to an image

ApplyCosineMask Returns an image resulting
from the application of a
circular cosine mask to an
image

ApplyHanningMask Returns an image resulting
from the application of a
circular hanning mask to an
image

AutoCorrelate Returns an image resulting
from the auto-correlation of
two images

AutoCorrelation Returns an image resulting
from the auto-correlation of
two images

CC Returns an image resulting
from the cross-correlation of
two images

Convolute Returns an image resulting
from the convolution of two
images

Convolve Returns an image resulting
from the convolution of two
images

Correlate Returns an image resulting
from the cross-correlation of
two images

CrossCorrelate Returns an image resulting
from the cross-correlation of
two images

CrossCorrelation Returns an image resulting
from the cross-correlation of
two images

DotProduct Returns the dot-product
(inner product) of two images

FFT Returns the Fourier
transforms of an image

FindPattern Returns the position
dependent cross-correlation
coefficient between an image
and a pattern

FlipHorizontal Returns an image resulting
from mirroring an image
around the vertical axis

FlipVertical Returns an image resulting
from mirroring an image
around the horizontal axis

GaussianHighPassFilter Returns an image resulting
from the application of a
Gaussian High Pass filter to
an image

GaussianLowPassFilter Returns an image resulting
from the application of an
Gaussian Low Pass filter to
an image

HighPass Returns an image resulting
from the application of a
Annular High Pass filter to
an image

HighPassFilter Returns an image resulting
from the application of a
Annular High Pass filter to
an image

IFFT Returns the inverse Fourier
transforms of an image

Invert Returns the inverse of an
image

Laplacian Returns the Laplacian of an
image

Lowpass Returns an image resulting
from the application of an
Annular Low Pass filter to an
image

LowpassFilter Returns an image resulting
from the application of an
Annular Low Pass filter to an
image

Negate Returns the inverse of an
image

PhaseCorrelate Returns the phase correlation
between two images

PhaseCorrelation Returns the phase correlation
between two images

PowerSpectrum Returns the Power Spectrum of
an image

Ps Returns the Power Spectrum of
an image

RadialAverage Returns the radial average of
an image

RealFFT Returns the Fourier
transforms of an image

RemoveCCDdefects Returns an image by adjusting
for ccd defects of a recorded
image

Repeat Returns an image by repeating
in x and y an existing image

Rotate Returns an image resulting
from rotating an image x
degrees anti-clockwise

RotateLeft Returns an image resulting
from rotating an image 90
deg. Anti-clockwise

RotateRight Returns an image resulting
from rotating an image 90
deg. clockwise

Scale Returns an image resulting
from scaling an image

Sharpen Returns an image resulting
from applying a sharpening
operation to an image

Shift Returns an image resulting
from shifting the origin of
an exiting image

ShiftCenter Returns an image resulting
from shifting the origin of
an exiting image

ShiftOrigin Returns an image resulting
from shifting the origin of
an exiting image

Smooth Returns an image resulting
from applying a smoothing
operation to an image

Sobel Returns an image resulting
from applying a Sobel
operation to an image

TemplateMatch Returns the position
dependent cross-correlation
coefficient between an image
and a pattern

Wf Returns an image resulting
from applying a Wiener Filter
to an image

WienerFilter Returns an image resulting
from applying a Wiener Filter
to an image

Image Data Access

Functions

Name Summary

GetPixel Gets the pixel value for a
given pixel

GetPixelAmplitude Gets the pixel amplitude for
a given pixel in a complex
image

GetPixelPhase Gets the pixel phase for a
given pixel in a complex
image

SetPixel Sets the pixel value for a
given pixel

SetPixelAmplitude Sets the pixel amplitude for
a given pixel in a complex
image

SetPixelPhase Sets the pixel phase for a
given pixel in a complex
image

[col,row] Indexing into an Image pixel
Image dmg(256,256)
img[10,10] = value Sets the pixel at [10,10] to

value

Peak Determination

Functions

Name Summary

AddPeakList Add a peaklist to an image.
The peaklist gets merged with
any other peaklists for the
image.

CreateVectorMap Creates a vector map from two
images (displacements)

FindMaxima Finds the maxima in an image
FindMinima Finds the minima in an image
FindPeaks Finds the peaks in an image
FitDoublePeaks Fits a peak list to a set of

overlapping Gaussian peaks
(two peaks are close)

FitExponentials Fits the peaks in a peak list
to Exponential peaks.

FitGaussians Fits the peaks in a peak list
to Gaussian peaks.

FitParabolas Fits the peaks in a peak list
to Parabolic peaks.

FitPeaks Fits the peaks in a peak list
to Gaussian peaks (other
shapes available)

GetPeakList Returns the peak list defined
for an image

HasPeakList Return true/false if the
image has/has not an
associated peak list

ReadPeakList Returns a peaklist (image)
from a peak list file (tab-
delimited text file)

SavePeaks Save the peaks in a peak list
to a file.

SavePeaksWithDialog Save the peaks in a peak list
to a file

SetPeakList Creates a peaklist for an
image replacing any existing
peaklist.

VectorMap Creates a vector map from two
sets of displacements

Lattice Determination

Functions

Name Summary

FitLattice Fits an existing lattice to a
Peaklist

GetLattice Gets the lattice defined on
an image

HasLattice Return true/false if the
image has/has not a lattice
defined

Vector

Operators

* The normal arithmetic
operators apply on vectors of
equal size

/
-
+
*=
/=
-=
+=

Declaration

Vector v Declares a vector, not yet
created and assigned

Vector c(10) Declares and creates a vector
of size 10 (10 elements)
initialized to 0

ComplexVector v Declares a complex vector,
not yet created and assigned

ComplexVector c(10) Declares and creates a
complex vector of size 10 (10
elements) initialized to
(0,0)

Member functions Summary

angle() Replaces each element of the
complex vector with the angle
(atan2(y/x)) in degrees

at(i) Returns the value of the
element of the vector at the
position ‘i’

conjugate() Replaces the complex vector
with its complex conjugate

create(len) Creates the vector of size
len

imag() Replaces the complex vector
with the imaginary component

length() Returns the Square root of
the sum of the squares

modulus() Replaces the complex vector
with a real vector containing
the modulus of the complex
elements

modsq() Replaces the complex vector
with a real vector containing
the modulus square of the
complex elements

Phase() Replaces each element of the
complex vector with the angle
(atan(y/x)) in radians

Print() Prints out all the values of
the vector

Real() Replaces the complex vector
with a real vector containing
the real part of the complex
elements

Resize(len) Resizes the vector to ‘len’
number of elements

Set(ndx,value) Sets the element of the
vector at index ‘ndx’ to the
value ‘value’

Size() Returns the number of
elements in the vector

Sort(order=0) Sorts the vector in
ascending(0) (default) or
descending(1) order

Creating an Image from a Vector
Vector V(100)
…
Image imag = V Creates an Image of size

V.size(),1

Image Display

Functions

Name Summary

Display Shows/Displays an image
DisplayAsTable Displays the image as a table

of numbers
DisplayAt Displays the image in a

window at the given position
DisplayOnLogscale Displays the image on a log

scale
GetSurveyMode Gets the method of survey

technique for setting black
and white values

GetSurveyTechnique Gets the method of survey
technique for setting black
and white values

GetWindowPosition Returns the window position
of an image

GetWindowSize Returns the window size for a
displayed image

SetDisplayType Sets the type of display for
an image

SetSurveyMode Sets the method of survey
technique for setting black
and white values

SetSurveyTechnique Sets the method of survey
technique for setting black
and white values

SetWindowPosition Sets the window position of
an image

SetWindowSize Sets the window size for a
displayed image

Show Equivalent to Display
ShowImage Equivalent to Display
UpdateImage Updates the display for a

modified image

Image Selections

Functions

Name Summary

ExpandSelection Expands a given selection
GetSelection Gets the rectangle of the

selection
SetSelection Sets the rectangle of the

selection

Annotations

Functions

Name Summary

AnnotationType Returns the type of a given
annotation

CountAnnotations Returns the number of
annotations on the image

CreateArrowAnnotation Creates an arrow annotation
CreateBoxAnnotation Creates a rectangular

annotation
CreateDoubleArrowAnnotation Creates a double arrow

annotation
CreateLineAnnotation Creates a line annotation
CreateOvalAnnotation Creates an oval annotation
CreateTextAnnotation Creates an text annotation
DeleteAnnotation Deletes a given annotation
DeselectAnnotation Deselects an annotation
GetAnnotationRect Gets the bounding rectangle

of a given annotation
GetNthAnnotationID Gets the ID of an annotation
IsAnnotationSelected Determines if an annotation

is selected
MoveAnnotation Moves the annotation to a

given position
OffsetAnnotation Offsets the annotation with

specified integer offsets
SelectAnnotation Selects the specified

annotation
SetAnnotationBackground* Sets the background of an

annotation
SetAnnotationColor Sets the Color of an

annotation
SetAnnotationFace* Sets the text face of an

annotation
SetAnnotationFont Sets the text font of an

annotation
SetAnnotationJustification* Sets the text justification

of an annotation
SetAnnotationRect Sets the bounding rectangle

of an annotation
SetAnnotationSize Sets the size of an

annotation
ShiftAnnotation Shifts the position of an

annotation. Equivalent to
MoveAnnotation

ValidAnnotation Is the annotation valid

*Not yet implemented

Strings

Operators

Name Summary

!= Inequality operator for
strings

+ Concatenate a string and a
real number

+ Concatenate a string and a
complex number

+ Concatenate a complex number
and a string

+ Concatenate a real number and
a string

+ Concatenate a string and a
string

== Equality operator for strings

Functions

Name Summary

Asc* Returns numeric value in
ascii

Chr* Returns ascii equivalent of a
number as a string

Left* Returns the leftmost portion
of a string

Len* Returns the length of a
string

mid* Returns the middle portion of
a string

right* Returns the rightmost portion
of a string

val* Converts a string to a real
number

*Not yet implemented

Persistent Notes (mostly not implemented)

Name Summary

DeletePersistentNote* Deletes persistent note
GetPersistentComplexNumberNote Gets the value of a

persistent complex number
note

GetPersistentNoteState* Gets persistent note state
GetPersistentNumberNote Gets the value of a

persistent number note
GetPersistentRectNote Gets the value of a

persistent rect note
GetPersistentRGBNumberNote* Gets the value of a

persistent RGB number note
GetPersistentStringNote* Gets the value of a

persistent string note
GetPersistentStringNote* Gets the value of a

persistent string note
SetPersistentComplexNumberNote Sets the value of a

persistent complex number
note

SetPersistentKeywordNote* Adds a persistent keyword
note

SetPersistentNoteState* Sets persistent note state
SetPersistentNumberNote Sets the value of a

persistent number note
SetPersistentRectNote Sets the value of a

persistent rect note
SetPersistentRGBNumberNote* Sets the value of a

persistent RGB number note
SetPersistentStringNote* Sets the value of a

persistent string note

*Not yet implemented

Number Conversions

Name Summary
BaseN* Convert a number to an

arbitrary base string
BaseN* Convert a number to an

arbitrary base string with a
fixed length

Binary* Convert a number to a binary
string with a fixed length

Binary* Convert a number to a binary
string

Decimal* Convert a number to a decimal
string

Decimal* Convert a number to a decimal
string with a fixed length

Hex* Convert a number to a hex
string with a fixed length

Hex* Convert a number to a hex
string

Octal* Convert a number to an octal
string with a fixed length

Octal* Convert a number to an octal
string

*Not yet implemented

Dialogs

Name Summary

ContinueCancelDialog Puts up a dialog with the
option to cancel or continue
the script

ErrorDialog Puts up a dialog with an
error string

GetNumber Prompts for a number to input
GetTwoImages Prompts for two images to

select
GetTwoImagesWithPrompt Prompts for two images to

select
OkCancelDialog Puts up a dialog with the

option to cancel or continue
the script

OkDialog Puts up a dialog with the
option to accept or not a
choice

TwoButtonDialog Puts up a dialog with two
buttons to choose from

Input/Output

Name Summary

OpenLogWindow Opens the log/output window
for scripts

OpenResultsWindow Opens the log/output window
for scripts (for DM
compatibility)

Print Prints (writes) an expression
to the output window. By
default adds a new line
character at the end

Result Prints (writes) an expression
to the output window. DM
compatible

Movies

Name Summary

AddImageToMovie Adds an image to a movie
AddWindowToMovie Adds a window (containing an

image) to a movie
CloseMovie Closes the movie
CreateNewMovie Creates a new movie with a

given name

Example:

image img = exprsize(256,256,icol)

number i
createnewmovie(“movie”)
for(i=0; i < 256; i++) {

addimagetomovie(img)
img.shift(1,0) ;

}
closemovie()

Miscellaneous

Name Summary

Catch catch an exception thrown
after a try statement

CloseProgressWindow* Not Yet Implemented
CommandDown Returns true/false depending

on if the Command (Apple) key
is down or not

DateStamp Not Yet Implemented
Delay Delay execution of the script

x number of 1/60th of a second
DoEvents Checks for input from the

keyboard
Exit Exit from the script
GetKey Returns the key currently

pressed
Help Gets help on a given function
OpenAndSetProgressWindow* Not Yet Implemented
OptionDown Returns true/false depending

on if the Option key is down
or not

ShiftDown Returns true/false depending
on if the Shift key is down
or not

SpaceDown Returns true/false depending
on if the Space bar is down
or not

Throw Throw an exception
ThrowString Throw an exception with a

string
Try Try to execute the following

bracketed statements. Check
for an exception by using the
catch statement

*Not yet implemented

Electron Microscopy Simulation Script Functions

General Calculation Functions

Name Summary

CalculateAtomicScatteringFactors Calculates the atomic
scattering factors for a
given atomic element and
places them in a file

CalculatExitWave Calculates the exit wave for
the simulation currently open

CalculateImage Calculates the image for the
simulation currently open

CalculatePotential Calculates the potential for
the simulation currently open

CalculateImageFromWave Calculates an image from a
complex exit wave, given a
microscope

CalculateLinearImageFromWave Calculates a linear image
from a complex exit wave,
given a microscope

ApplyFocusPlate Applies a focus plate (focus
given in an image) to a
complex wavefunction

ShiftImageFocus Shifts the focus of a given
complex wavefunction

PropagateWave Calculates a 3D Complex
Volume Image containing the
electron wavefunction at each
slice in the multislice
calculation up to a given
thickness

Microscope Data Type

Declaration

Microscope mic

Initializing

Name Summary

Microscope mic Defines a default microscope
= Equates a microscope to

another microscope

Example:

Microscope mic
mic.setvoltage(300)

Example:

Simulation ss
ss = GetSimulation() Get the Current Simulation

See data type below
ss = GetSimulation(String) Get the named Simulation

Microscope mic Sets a default Microscope
mic = ss.GetMicroscope() Assigns to simulation

Microscope

Microscope Class Member Functions

Name Summary

GetAperture Returns the Aperture of the
objective lens in 1/Å

GetApertureH Returns the horizontal Center
of Objective Lens Aperture in
units of h of reciprocal
space

GetApertureHK Returns the Center of
Objective Lens Aperture in
units of h and k of
reciprocal space

GetApertureK Returns the Vertical Center
of Objective Lens Aperture in
units of k of reciprocal
space

GetCs Returns the Cs in mm of the
objective lens

GetCs5 Returns the Cs5 in mm of the
objective lens

GetDelta Returns the Cs in mm of the
objective lens

GetDivergence Returns the Cs in mm of the
objective lens

GetFocus Returns the focus in Å of the
objective lens

GetFocusSpread Returns the spread in focus

in Å of the objective lens
GetVoltage Returns the Cs in mm of the

objective lens
Print() Prints out a summary of the

microscope parameters
SetAperture Sets the Aperture of the

objective lens in 1/Å
SetApertureH Sets the horizontal Center of

Objective Lens Aperture in
units of h of reciprocal
space

SetApertureHK Sets the Center of Objective
Lens Aperture in units of h
and k of reciprocal space

SetApertureK Sets the Vertical Center of
Objective Lens Aperture in
units of k of reciprocal
space

SetCs Sets the Cs in mm of the
objective lens

SetCs5 Sets the Cs5 in mm of the
objective lens

SetDelta Sets the Cs in mm of the
objective lens

SetDivergence Sets the Cs in mm of the
objective lens

SetFocus Sets the focus in Å of the
objective lens

SetFocusSpread Sets the spread in focus in Å
of the objective lens

SetVoltage Sets the Cs in mm of the
objective lens

Simulation Data Type

Declaration

Simulation ss

Initializing

Name Summary

GetSimulation Gets the current simulation
OpenSimulation Sets the current simulation

from an existing structure
file

Example:
simulation ss
ss = GetSimulation() Gets current simulation
ss = GetSimulation(”bcsco”) Gets the open “bcsco”

simulation

Example:
simulation ss = opensimulation(“bcsco.at”)

Simulation Class Member Functions

Name Summary

CalculateAll (Re)Calculates the
Potential(s), Exit Wave(s)
and Image(s).

Calculate3DPotential Calculates the 3D potential
for the unit cell of the
current simulation

CalculateExitWave Calculates the Exit Wave
CalculateImage Calculates the Image
CalculatePotential Calculates the Potential
CreateFrequencyImage Returns a square image of a

simulated object in
reciprocal space.

CreateImage Returns a square image from a
given calculated image of
given size and sampling

DisplayExitWave Displays a given calculated
exit wave for the simulation

DisplayExitWaveModulus Displays the modulus of the
exit wave

DisplayExitWavePhase Displays the phase of the
exit wave for the simulation

DisplayImage Displays a given image for
the simulation

DisplayPotential Displays the calculated
potential for the simulation

Focus Sets the focus of the
simulation

GetAperture Returns the outer objective
lens aperture (1/Å)

GetApertureAngle Returns the outer objective
lens aperture in mradians

GetApertureCenter Returns the center of the
objective lens aperture

GetApertureCenterHK Returns the center of the
objective lens aperture in
(H,K) of the reciprocal space

of the unit cell
GetCs Returns the Spherical

Aberration Cs in mm
GetCs5 Returns the 5th order

Spherical Aberration Cs5 in
mm

GetDeltaFocus Returns the increment in
focus for the calculation

GetDeltaThickness Returns the increment in
thickness for the calculation

GetDivergence Returns the convergence angle
(mrad) for the calculation

GetEndFocus Returns the ending value for
focus

GetEndThickness Returns the ending value for
thickness

GetExitWave Returns an image containing a
given number of unit cells of
the exit wave of the
calculation

GetExitWaveModulus Returns an image containing a
given number of unit cells of
the modulus of the exit wave

GetExitWavePhase Returns an image containing a
given number of unit cells of
the phase of the exit wave

GetFocus Returns the focus (Å) for the
calculation

GetFocusSpread Returns the focus Spread (Å)
for the calculation

GetImage Returns an image containing
the a given number of unit
cells of calculated simulated
image

GetInnerAperture Returns the inner objective
lens aperture (1/Å)

GetOpticAxis Returns the center of the
optic axis in tilt angle
(mrad) and azimuthal angle
(degrees)

GetOpticAxisHK Returns the center of the
optic axis in (H,K) of the
reciprocal space of the unit
cell

GetOuterAperture Returns the outer objective
lens aperture (1/Å)

GetPhaseShift Returns the phase shift for
the phase plate in units of π

GetPhaseShiftRadius Returns the radius for the
phase plate in units of 1/Å

GetPhaseShiftRadius2 Returns the outer radius for
the phase plate in units of
1/Å. Beams are blocked

between PhaseShiftRadius and
PhaseShiftRadius2 if they are
different

GetPotential Returns an image containing a
given number of unit cells of
the calculated potential

GetStartFocus Returns the starting focus
(Å) for a thru-focus series

GetStartThickness Returns the starting
thickness (Å) for a thru-
thickness series

GetThickness Returns the thickness (Å) for
the simulation

GetTilt Returns the tilt angle of the
specimen in mrad and the
azimuthal angle of specimen
tilt with respect to the
horizontal axis in degrees

GetTiltAngle Returns the tilt angle of the
specimen in mrad

GetTiltDirection Returns the azimuthal angle
of specimen tilt with respect
to the horizontal axis in
degrees

GetTiltH Gets the h value of the
center of laue circle
(specimen tilt)

GetTiltHK Gets the h,k values of the
center of laue circle
(specimen tilt)

GetTiltK Gets the k value of the
center of laue circle
(specimen tilt)

GetVibration Gets the vibration of the
“specimen” along x and y

GetVibrationX Gets the vibration of the
“specimen” along x

GetVibrationY Gets the vibration of the
“specimen” along y

GetVoltage Returns the voltage of the
microscope for the simulation
(kV)

LoadExitWave Loads a 1 by 1 unit cell of
the Exit Wave as calculated
and returns it as an image

LoadExitWaveModulus Loads a 1 by 1 unit cell of
the Exit Wave modulus as
calculated and returns it as
an image

LoadExitWavePhase Loads a 1 by 1 unit cell of
the Exit Wave Phase as
calculated and returns it as
an image

LoadImage Loads a 1 by 1 unit cell of

the Image as calculated and
returns it as an image

LoadPotential Loads a 1 by 1 unit cell of
the Potential as calculated
and returns it as an image

PropagateWave Calculates a 3D Complex
Volume Image containing the
electron wavefunction at each
slice in the multislice
calculation up to a given
thickness

SetAperture Sets the outer objective lens
aperture (1/Å)

SetApertureAngle Sets the outer objective lens
aperture in mradians

SetApertureCenter Sets the center of the
objective lens aperture

SetApertureHK Sets the center of the
objective lens aperture in
(H,K) of the reciprocal space
of the unit cell

SetCs Sets the Spherical Aberration
Cs in mm

SetCs5 Sets the 5th order Spherical
Aberration Cs5 in mm

SetDeltaFocus Sets the Incremental focus
(Å) for a thru-focus series

SetDeltaThickness Sets the incremental
thickness (Å) for a thru-
thickness series

SetDivergence Sets the convergence angle
(mrad) for the calculation

SetEndFocus Sets the ending value for
focus [Å] in a thru-focus
series

SetEndThickness Sets the ending value for
thickness [Å] in a thru-
thickness series

SetFocus Sets the focus (Å) for the
calculation

SetFocusSpread Sets the focus Spread (Å) for
the calculation

SetInnerAperture Sets the inner objective lens
aperture (1/Å)

SetOpticAxis Sets the center of the optic
axis in tilt angle (mrad) and
azimuthal angle (degrees)

SetOpticAxisHK Sets the center of the optic
axis in (H,K) of the
reciprocal space of the unit
cell

SetOuterAperture Sets the outer objective lens
aperture (1/Å)

SetPhaseShift Sets the phase shift for the
phase plate in units of π

GetPhaseShiftRadius Sets the radius for the phase
plate in units of 1/Å

GetPhaseShiftRadius2 Sets the outer radius for the
phase plate in units of 1/Å.
Beams are blocked between
PhaseShiftRadius and
PhaseShiftRadius2 if they are
different

SetStartFocus Sets the starting focus (Å)
for a thru-focus series

SetStartThickness Sets the starting thickness
for a thru-thickness series

SetThickness Sets the thickness (Å) for
the calculation

SetTiltAngle Sets the tilt angle of the
specimen in mrad

SetTiltDirection Sets the azimuthal angle of
specimen tilt with respect to
the horizontal axis in
degrees

SetTiltH Sets the h value of the
center of laue circle
(specimen tilt)

SetTiltHK Sets the h,k values of the
center of laue circle
(specimen tilt)

SetTiltK Sets the k value of the
center of laue circle
(specimen tilt)

SetVibration Sets the vibration of the
“specimen” along x and y

SetVibrationX Sets the vibration of the
“specimen” along x

SetVibrationY Gets the vibration of the
“specimen” along y

SetVoltage Sets the voltage of the
microscope for the simulation
(kV)

Thickness Returns the thickness for the
calculation

Example:

Simulation ss = getsimulation()
Number cs = 0.5 // Cs in mm
Number voltage = 300 // voltage in kV
ss.setcs(cs)
ss.setvoltage(voltage)

// Assume that the potential has already been calculated

// as our changes only require the exit wave(s) (change in wavelength)
// and the image(s) to be recalculated

ss.showpotential(1,5,5)

ss.calculateexitwave()
ss.calculateimage()

// Display the exit wave. The first of whatever number calculated
// 5 by 5 unit cell
image xw = ss.getexitwave(1,5,5) //
xw.phase()
xw.setname(“Phase of exit wave”)
xw.show()

// Show the image. The first of whatever number calculated
// 5 by 5 unit cell
image img = ss.getimage(1,5,5)
img.setname(“Calculated Image”)
img.show()

Example:

Simulation ss = getsimulation() // Get current simulation
image3d test // Declare a 3D volume image
ss.calculate3dpotential(test) // Calculate the 3D potential
test.display() // into test and display

// Image sections are traversed
// using the arrow keys

Example:

Simulation ss = getsimulation() // Get current simulation
image tt = ss.loadimage() // Load the image
tt.fft() // Fourier transform
image dp = ss.createfrequencyimage(tt) // Create image of fourier transform

// with default size 512
dp.show() // Show the frequency image

tt = ss.loadexitwave() // Do the same for the diffraction
// pattern

tt.fft()
image dp2 = ss.createfrequencyimage(tt)
dp2.show()

Alphabetical description of general script
functions and class member functions

abs
SUMMARY Calculates the absolute value of a real/complex

number or the absolute values of a real/complex
image

SYNTAX number abs(number)

SYNTAX number abs(complexnumber)

SYNTAX image abs(image)

SYNTAX image abs(compleximage)

SYNTAX void image.abs() Image member function

DESCRIPTION Calculates the absolute value of a complex number or
image. (also known as the modulus of a complex
number) Calculates the absolute value(s) of a real
number of real image

ac
SUMMARY Calculates the autocorrelation function of a real

image

SYNTAX image ac(image)

SYNTAX void image.ac() Image member function

acos
SUMMARY Calculates the arccosine of a real number or a real

image

SYNTAX number acos(number)

SYNTAX image acos(image)

SYNTAX void image.acos() Image member function

acosh
SUMMARY Calculates the hyperbolic arccosine of a real number

or a real image

SYNTAX number acosh(number)

SYNTAX image acosh(image)

SYNTAX void image.acosh() Image member function

AddImage
SUMMARY Adds an image to an image stack

SYNTAX void imagestack.addimage(image) Image stack
member function

AddImageToMovie
SUMMARY Adds an image to an existing open movie

SYNTAX void AddImageToMovie (image)

DESCRIPTION Adds an image to an existing open movie.

AddPeakList
SUMMARY Add a peaklist to an image merging with an existing

peaklist (if any).

SYNTAX void AddPeakList(image theImage, image peaklist)

DESCRIPTION After reading in a peaklist from a file or getting
the peaklist from an image, this peaklist can be
added to an existing image. The peaklist merges with
any existing peaklist associated with the image. The
dimensions of the image to be associated the
peaklist must be of the same dimensions as the image
from which the peaklist originated for this to make
sense.

AddWindowToMovie
SUMMARY Adds an image to an existing open movie

SYNTAX void AddWindowToMovie (image)

DESCRIPTION Adds a window (referenced by a displayed image) to
an existing open movie.

AdjustAngle
SUMMARY Adjusts the angle of the image if different from 90

SYNTAX void image.AdjustAngle() Image member function

DESCRIPTION Adjusts the image so that it has an angle of 90
degrees. This is applicable for images returned from
a simulation. In this case the image represents a
periodic object and the angle of the unit cell may
be different from 90 deg.

AdjustSampling
SUMMARY Adds an image to an image stack

SYNTAX void image.AdjustSampling(image) Image member
function

DESCRIPTION Adjusts the image so that it has equal sampling in x
and y. This is applicable for images returned from a
simulation. In this case the image represents a
periodic object and the sampling along the a and b
axes may be different.

AiryAi
SUMMARY Calculates the Airy Ai function

SYNTAX number AiryAi(number)

DESCRIPTION *Not Implemented

AiryBi
SUMMARY Calculates the Airy Bi function

SYNTAX number AiryBi(number)

DESCRIPTION

Align
SUMMARY Aligns two images

SYNTAX complexnumber align(image x, image y [, number
method] [, number freqCutoff [, number focusShift]
[,number voltage])

DESCRIPTION Aligns image y with image x using either
crosscorrelation or phasecorrelation. Only argument
1 and 2 are required. The others are optional.
Default values are method = 0 (crosscorrelation = 0,
phasecorrelation =1), freqCutoff = 0.3*maxFrequency,
focusShift = 0[Å], voltage = 300 [kV] Returns the
shift used to translate image y in a complex number

AlignImages
SUMMARY Aligns two images

SYNTAX AlignImages (image x, image y [, number method] [,
number freqCutoff [, number focusShift] [,number
voltage])

DESCRIPTION Equivalent to Align . Aligns image y with image x
using either crosscorrelation or phasecorrelation.
Only argument 1 and 2 are required. The others are
optional. Default values are method = 0
(crosscorrelation = 0, phasecorrelation =1),
freqCutoff = 0.3*maxFrequency, focusShift = 0[Å],
voltage = 300 [kV]

AlignTwoImages
SUMMARY Aligns two images

SYNTAX complexnumber AlignTwoImages(image x, image y [,
number method] [, number freqCutoff [, number
focusShift] [,number voltage])

DESCRIPTION Equivalent to Align. Aligns image y with image x
using either crosscorrelation or phasecorrelation.
Only argument 1 and 2 are required. The others are
optional. Default values are method = 0
(crosscorrelation = 0, phasecorrelation =1),
freqCutoff = 0.3*maxFrequency, focusShift = 0[Å],

voltage = 300 [kV] Returns the shift used to
translate image y in a complex number

Amplitude
SUMMARY Returns the modulus of a complex number/image/

image3D as a real number/image

SYNTAX number amplitude(complexnumber)

SYNTAX image amplitude(compleximage)

SYNTAX void image.amplitude() // Class Member Function

SYNTAX void image3D.amplitude()// Class Member Function

AnalyzeDiffractogram*
SUMMARY Analyzes a diffractogram

SYNTAX void AnalyzeDiffractogram(image , numbervariable
defocus, numbervariable direction, numbervariable
err)

DESCRIPTION *Not Implemented -- Analyze diffractogram in image.
Returned defocus, astigmatism, and err are in nm

Angle
SUMMARY Returns the phase of a complex number in degrees

SYNTAX number complexnumber.angle()

AnnotationType
SUMMARY Returns the type of an annotation

SYNTAX number AnnotationType (image , number
annotationID)

DESCRIPTION Returns the type of the annotation specified in the
given image with the given index.

AnnularHighpassFilter
SUMMARY Applies a high pass filter to an image

SYNTAX image AnnularHighPassFilter(image , number cutoff
[, number edgewidth])

SYNTAX void image.AnnularHighPassFilter(number cutoff [,
number edgewidth]) // Image member function

If the image is calibrated in Å, the cutoff is in 1/
Å

DESCRIPTION edgewidth by default is set to 0 and represents a
soft edge

AnnularLowpassFilter
SUMMARY Applies a low pass filter to an image

SYNTAX image AnnularLowPassFilter(image , number cutoff [,
number edgewidth])

SYNTAX void image.AnnularLowPassFilter(number cutoff [,
number edgewidth]) // Image member function

If the image is calibrated in Å, the cutoff is in 1/
Å

DESCRIPTION edgewidth by default is set to 0 and represents a
soft edge

ApplyAnnularMask
SUMMARY Applies an annular mask to an image

SYNTAX image ApplyAnnularMask(image , number r1, number r2
[, number edgewidth] [, number isopaque])

SYNTAX void image.ApplyAnnularMask(number r1, number r2 [,
number edgewidth] [, number isopaque]) // Image
member function

If the image is calibrated in Å, the values r1 and
r2 are in 1/Å

DESCRIPTION Annular mask of inner radius r1 and outer radius r2.
By default the width of the edge = 0 and by default
isopaque = false

ApplyCircularMask
SUMMARY Returns an image resulting from the application of

an annular mask to an image

SYNTAX void ApplyCircularMask (image , number r, [, number
edgewidth] [, number isopaque]) // In place
operation

If the image is calibrated in Å, the values r is in
1/Å

SYNTAX void image.ApplyCircularMask ([number edgewidth] [,
number isopaque]) // In place operation

DESCRIPTION Circular mask of radius r. By default the width of
the edge = 0 and by default isopaque = false

ApplyCosineMask
SUMMARY Returns an image resulting from the application of a

circular cosine mask to an image

SYNTAX void ApplyCosineMask(image) // In place operation

SYNTAX void image.ApplyCosineMask() // Member function

ApplyFocusPlate
SUMMARY Returns an image resulting from the application of a

arbitrary focus plate to a complex image or wave
function

SYNTAX ComplexImage ApplyFocusPlate(compleximage source,
image focus [, number voltage = 300] [, number
sampling = 0.2])

SYNTAX void ApplyFocusPlate(image focus [, number voltage =
300] [, number sampling = 0.2]) // Image member
function

DESCRIPTION The focus variation (or constant) is given in the
image focus. The complex image is propagated over
the distance focus (which can vary as a function of

position). By default the voltage is 300kV. If the
source is calibrated in Ångstrom or nanometer, the
sampling is taken from the source. Otherwise the
default is 0.2 Å/pixel and must be set if different.

ApplyHanningMask
SUMMARY Returns an image resulting from the application of a

circular hanning mask to an image

SYNTAX void ApplyHanningMask(image) // In place operation

SYNTAX void image.ApplyHanningMask() // Member function

asin
SUMMARY Calculates the arcsine of a real number or a real

image

SYNTAX number asin(number)

SYNTAX image asin(image)

SYNTAX void image.asin() Image member function

asinh
SUMMARY Calculates the hyperbolic arcsine of a real number

or a real image

SYNTAX number asinh(number)

SYNTAX image asinh(image)

SYNTAX void image.asinh() Image member function

atan2
SUMMARY Calculates the arctangent of y/x for real numbers,

real images of a complex image

SYNTAX number atan2(number x, number y) // atan(y/x)

SYNTAX image atan2(image x, image y)

SYNTAX void image.atan2() Image member function

atanh
SUMMARY Calculates the hyperbolic arctangent of a real

number or a real image

SYNTAX number atanh(number)

SYNTAX image atanh(image)

SYNTAX void image.atanh() Image member function

Autocorrelate
SUMMARY Calculates the autocorrelation function of a real

image

SYNTAX image autocorrelate(image)

SYNTAX void image.autocorrelation() Image member function

BeginFill**
SUMMARY Starts a fill from projections

SYNTAX void image.beginfill() // image class member
function

SYNTAX void image3D.beginfill() // image3d class member
function

DESCRIPTION BeginFill and EndFill must bracket the filling from
projections.

BesselI
SUMMARY Calculates the general Bessel I function

SYNTAX number BesselI(number, number)

DESCRIPTION

BesselJ
SUMMARY Calculates the general Bessel J function

SYNTAX number BesselJ(number, number)

DESCRIPTION

BesselK
SUMMARY Calculates the general Bessel K function

SYNTAX number BesselK(number, number)

DESCRIPTION

BesselY
SUMMARY Calculates the general Bessel Y function

SYNTAX number BesselY(number, number)

DESCRIPTION

Beta
SUMMARY Calculates the beta function

SYNTAX number Beta (number, number)

DESCRIPTION

bgs
SUMMARY Applies a Background Noise Subtraction Filter on a

real image

SYNTAX void image.bgs()

DESCRIPTION Attempts to subtract out an amorphous background
from an image containing crystalline material. In
general the WienerFilter is a safer filter from a
statistical point.

BinomialCoefficient
SUMMARY Calculates the binomial coefficient

SYNTAX number BinomialCoefficient (number, number)

DESCRIPTION

BinomialRandom*
SUMMARY Calculates a random number with binomial

distribution

SYNTAX number BinomialRandom (number, number)

DESCRIPTION *Not Implemented

cc
SUMMARY Returns an image resulting from the cross-

correlation of two images

SYNTAX image cc(image x, image y)

ccd
SUMMARY Corrects for CCD detector bad pixels in a real image

SYNTAX image ccd(image)

SYNTAX void image.ccd()

DESCRIPTION Attempts to locate pixels that correspond to bad
pixels in the CCD camera. The pixel values fall out
of the normal range and are substituted by mean
values of the neighborhood

ceiling
SUMMARY Limits all values of a real image to a given maximum

value

SYNTAX image ceiling(image , number)

SYNTAX void image.ceiling(number) Image member function

cis
SUMMARY Calculates a unit vector in the complex plane

SYNTAX compleximage cis(image x, image y)

DESCRIPTION Returns the complex image (cos(x) , sin(x))

clip
SUMMARY Limits all values of a real image to given minimum

and maximum values

SYNTAX image clip(image , number min, number max)

SYNTAX void image.clip(number min, number max) Image
member function

CloseMovie
SUMMARY Closes an open movie

SYNTAX void CloseMovie ()

complex
SUMMARY Creates a complex number/image from two real

numbers/images

SYNTAX complexnumber complex(number x, number y) // x +iy

SYNTAX compleximage complex(image x, image y) // x + iy

complexconjugate
SUMMARY Returns the complex conjugate of a complex number/

image

SYNTAX complexnumber complexconjugate (complexnumber)

SYNTAX compleximage complexconjugate (compleximage)

ComplexModulusSq / cmsq
SUMMARY Returns the complex modulus square of a complex

image.

SYNTAX compleximage ComplexModulusSq(compleximage)

SYNTAX void image.ComplexModulusSq() // Member Function

SYNTAX void image.cmsq() // Member Function

DESCRIPTION This replaces a complex image with the product of
itself and its complex conjugate. It is the complex
modulus square. Imaginary part is zero

conjugate
SUMMARY Returns the complex conjugate of a complex number/

image

SYNTAX complexnumber conjugate(complexnumber)

SYNTAX compleximage conjugate(compleximage)

SYNTAX void image.conjugate(number) Image member function

SYNTAX number complexnumber.conjugate() complex number
member function

ContinueCancelDialog

SUMMARY Continue cancel dialog

SYNTAX Boolean ContinueCancelDialog(String prompt)

DESCRIPTION Puts up a dialog with both a Continue button and
Cancel button. Returns true for Continue and false
for Cancel.

Convolve
SUMMARY Returns the convolution of two images

SYNTAX image convolve(image x, image y)

DESCRIPTION Equivalent to Convolute

Convolute
SUMMARY Returns the convolution function of two images

SYNTAX image convolve(image x, image y)

DESCRIPTION Equivalent to Convolve

Correlate
SUMMARY Returns the correlation function of two images

SYNTAX image correlate(image x, image y)

DESCRIPTION

cos
SUMMARY Calculates the cosine of a real number or a real

image

SYNTAX number cos(number)

SYNTAX image cos(image)

SYNTAX void image.cos() Image member function

cosh
SUMMARY Calculates the hyperbolic cosine of a real number or

a real image

SYNTAX number cosh(number)

SYNTAX image cosh(image)

SYNTAX void image.cosh() Image member function

CountAnnotations

SUMMARY Returns the number of annotations in an image

SYNTAX Number CountAnnotations(Image)

DESCRIPTION Returns the number of annotations contained in the
image as a number.

CreateArrowAnnotation

SUMMARY Creates an arrow annotation

SYNTAX Number CreateArrowAnnotation(Image, Number top,
Number left, Number bottom, Number right)

DESCRIPTION Creates an arrow annotation in the given image with
the given endpoints. Returns the ID to the new
annotation as a number.

CreateDoubleArrowAnnotation

SUMMARY Creates a double arrow annotation

SYNTAX Number CreateDoubleArrowAnnotation(Image, Number
top, Number left, Number bottom, Number right)

DESCRIPTION Creates a double arrow annotation in the given image
with the given endpoints. Returns the ID to the new
annotation as a number.

CreateComplexImage
SUMMARY Creates a complex image of a given size

SYNTAX image CreateComplexImage(string name, number width,
number height)

DESCRIPTION Returns a Complex image with the given name and
dimensions

CreateFloatImage
SUMMARY Creates a real image of a given size

SYNTAX image CreateFloatImage(string name, number width,
number height)

SYNTAX image CreateFloatImage(number width, number height)

DESCRIPTION Returns a real image with the given name and
dimensions. Equivalent to “CreateImage”, “RealImage”
and “NewImage”

CreateImage
SUMMARY Creates a real image of a given size

SYNTAX image CreateImage(string name, number width, number
height)

SYNTAX image CreateImage(number width, number height)

DESCRIPTION Returns a real image with the given name and
dimensions. Equivalent to “CreateFloatImage”,
“RealImage” and “NewImage”

CreateLineAnnotation

SUMMARY Creates a line annotation

SYNTAX Number CreateLineAnnotation(Image, Number top,
Number left, Number bottom, Number right)

DESCRIPTION Creates a line annotation in the given image with
the given endpoints. Returns the ID to the new
annotation as a number.

CreateNewMovie
SUMMARY Creates and opens a movie

SYNTAX void CreateNewMovie (string movieName)

CreateOvalAnnotation

SUMMARY Creates an oval annotation

SYNTAX Number CreateOvalAnnotation(Image, Number top,
Number left, Number bottom, Number right)

DESCRIPTION Creates an oval annotation in the given image with
the given coordinates. Returns the ID to the new
annotation as a number.

CreateTableFromImage
SUMMARY Displays the image as a table of numbers

SYNTAX void CreateTableFromImage (image)

DESCRIPTION Will create a table representing the content of an
image. Equivalent to “DisplayAsTable”

CreateTextAnnotation

SUMMARY Creates a text annotation

SYNTAX Number CreateTextAnnotation(Image, Number top,
Number left, String text)

DESCRIPTION Creates a text annotation in the given image in the
box specified by the coordinates. Returns the ID to
the new annotation as a number.

CreateVectorMap
SUMMARY Creates a vector map from two images

SYNTAX void CreateVectorMap(image x, image y [, number
samplingX] [, number samplingY] [, number scale])

DESCRIPTION Creates and displays a vector map from two images x
and y which correspond to the x and y components of
the vectors. Vectors will be created every samplingX
(default=16) pixels and samplingY (default=16)
pixels. Vectors are drawn with the magnification
factor: scale (default=10)

CrossCorrelate
SUMMARY Returns the correlation function of two images

SYNTAX image crosscorrelate(image x, image y)

DESCRIPTION Equivalent to cc, correlate and crossscorrelation

CrossCorrelation
SUMMARY Returns the correlation function of two images

SYNTAX image crosscorrelate(image x, image y)

DESCRIPTION Equivalent to cc, correlate and crossscorrelate

CrossProduct
SUMMARY Calculates the cross product

SYNTAX RealImage CrossProduct(RealImage a, RealImage b)

DESCRIPTION Calculates the cross product of two 3 element
images.

DateStamp

SUMMARY Returns date and time

SYNTAX String DateStamp(void)

DESCRIPTION Returns a string representing the current date and
time.

Delay
SUMMARY Delay execution of the script x number of 1/60th of a

second

SYNTAX void Delay (number)

DeleteAnnotation

SUMMARY Deletes an annotation

SYNTAX void DeleteAnnotation(Image, Number annotationID)

DESCRIPTION Deletes the annotation specified by the annotation
ID in the given image.

DeleteImage
SUMMARY Deletes an image. Deletes an image in an image stack

SYNTAX void DeleteImage(image)

SYNTAX void imagestack.deleteimage(image) Image
member function

DeselectAnnotation

SUMMARY Deselects an annotation

SYNTAX void DeselectAnnotation(Image, Number
annotationID)

DESCRIPTION Deselects the annotation specified by the annotation
ID in the given image.

Display
SUMMARY Displays an image

SYNTAX void Display(image)

SYNTAX void image.Display() // Class member

SYNTAX void image3D.Display() // Class member

SYNTAX void imagestack.Display() // Class member

DisplayAsTable
SUMMARY Displays the image as a table of numbers

SYNTAX void DisplayAsTable(image)

DESCRIPTION Will create a table representation of the image.
Currently the image does not change its
representation as in DM, but rather creates a
separate table. Equivalent to “CreateTableFromImage”

DisplayAt
SUMMARY Displays the image in a window at the given position

SYNTAX void DisplayAt(image, number x, number y)

DESCRIPTION x and y are the top left coordinates of the window

DisplayOnLogScale
SUMMARY Determines if an image is to be displayed on a log

scale

SYNTAX void DisplayOnLogScale(image, number log)

SYNTAX void image.DisplayOnLogScale(number log) // Class
Member

DESCRIPTION Sets if the image is to be displayed on a logscale
“log” set to 1 (true) or 0 (false)

distance
SUMMARY Calculates the pythagorean theorem

SYNTAX number distance(number x, number y)

DESCRIPTION Returns sqrt(x*x + y*y).

Doevents
SUMMARY Checks for input from the keyboard. Useful to check

for interrupts in a loop or for control

SYNTAX void Doevents ()

DotProduct
SUMMARY Calculates the inner product (dot-product) between

to real images (vectors)

SYNTAX number dotproduct(image img1, image img2)

EndFill**
SUMMARY Ends a fill from projections

SYNTAX

DESCRIPTION

erf
SUMMARY Calculates the error function

SYNTAX number erf(number)

DESCRIPTION

erfc
SUMMARY Calculates the complement of the error function

SYNTAX number erfc(number)

DESCRIPTION

ErrorDialog
SUMMARY Puts up a dialog with an error number

SYNTAX void ErrorDialog(number)

Exit
SUMMARY Exit from the script

SYNTAX void Exit ()

exp
SUMMARY Calculates the exponential of a real/complex number

or a real/complex image

SYNTAX number exp(number)

SYNTAX complexnumber exp(complexnumber)

SYNTAX image exp(image)

SYNTAX compleximage exp(compleximage)

SYNTAX void image.exp() Image member function

exp1
SUMMARY Calculates the exponential of a real number or a

real image and subtracts 1

SYNTAX number exp1(number)

SYNTAX image exp1(image)

SYNTAX void image.exp1() Image member function

exp2
SUMMARY Calculates 2 raised to the power of a real number or

a real image

SYNTAX number exp2(number)

SYNTAX image exp2(image)

SYNTAX void image.exp2() Image member function

exp10
SUMMARY Calculates 10 raised to the power of a real number

or a real image

SYNTAX number exp10(number)

SYNTAX image exp10(image)

SYNTAX void image.exp10() Image member function

ExpandSelection

SUMMARY Expands the selection of an image

SYNTAX void ExpandSelection(Image)

DESCRIPTION Expands the selection in the given image to fit the
entire image.

ExponentialRandom
SUMMARY Calculates a random number with exponential

distribution

SYNTAX number ExponentialRandom()

DESCRIPTION

exprsize
SUMMARY Allocates an image of a given size and optionally

assigns it to an expression

SYNTAX image exprsize(number width, number height)

SYNTAX compleximage exprsize(number width, number height)

SYNTAX image exprsize(number width, number
height,realimageexpression)

SYNTAX compleximage exprsize(number width, number
height,realimageexpression)

exprsize3
SUMMARY Allocates a volume (3D) image of a given size and

optionally assigns it to an expression

SYNTAX image exprsize3(number width, number height, number
height)

SYNTAX compleximage exprsize3(number width, number
height , number height)

SYNTAX image exprsize(number width, number height, number
height ,realimageexpression)

SYNTAX compleximage exprsize(number width, number height,
number height ,realimageexpression)

extract
SUMMARY Returns an image from a region of another image

SYNTAX image extract(image, number centerX, number centerY
, number width, number height)

factorial
SUMMARY Calculates the factorial of a real number or a real

image

SYNTAX number factorial(number)

SYNTAX image factorial(image)

SYNTAX void image.factorial() Image member function

DESCRIPTION The values are rounded to the nearest integer. The
factorial of values less than 1 are returned as 0

FFT
SUMMARY Takes the forward Fourier transform of an image, a

volume image or an image within an imagestack or the
entire imagestack

SYNTAX image fft(image)

SYNTAX image3D fft(image3D)

SYNTAX void image.fft() Image member function

SYNTAX void image3D.fft() Image member function

SYNTAX void imagestack.fft(number) Image member function

SYNTAX void imagestack.fft() Image member function

DESCRIPTION

FillFromProjection**
SUMMARY Fills in a 2D image from 1D projections

SYNTAX

DESCRIPTION

FindMaxima
SUMMARY Finds the minima in an image

SYNTAX void FindMaxima(Image, [number minValueForPeak],
[number minPeakDistance], [number cmRadius], [number
distanceFromEdgde])

SYNTAX void image.FindMaxima([number minValueForPeak] ,
[number minPeakDistance], [number cmRadius], [number
distanceFromEdgde])

DESCRIPTION Look for maxima in the image. minValueForPeak is the
smallest value in the image to be considered to be a
peak. CmRadius is the center of mass radius used for
defining the peak. minPeakDistance is the smallest
distance allowed between peaks. distanceFromEdgde is
the closest proximity to the edge of the image that
is searched for peaks. Default values if not
specified are: minValueForPeak = imageMax -
0.2*imageRange, minPeakDistance = 0, cmRadius = 0 ,
distanceFromEdgde = 0

FindMinima
SUMMARY Finds the minima in an image

SYNTAX void FindMinima (Image, [number maxValueForPeak],
[number minPeakDistance], [number cmRadius], [number
distanceFromEdgde])

SYNTAX void image.FindMinima([number maxValueForPeak] ,
[number minPeakDistance], [number cmRadius], [number
distanceFromEdgde])

DESCRIPTION Look for minima in the image. maxValueForPeak is
the largest value in the image to be considered to
be a peak. CmRadius is the center of mass radius
used for defining the peak. minPeakDistance is the
smallest distance allowed between peaks.
distanceFromEdgde is the closest proximity to the
edge of the image that is searched for peaks.
Default values if not specified are: maxValueForPeak
= imageMin + 0.2*imageRange, minPeakDistance = 0,
cmRadius = 0 , distanceFromEdgde = 0

FindPattern
SUMMARY Returns the position dependent cross-correlation

coefficient between an image and a pattern for each
position of the pattern within the image

SYNTAX image FindPattern(image sourceImage [. Image
template] [,number normalize])

DESCRIPTION This function performs a cross correlation between
the sourceimage and the template for each possible
position of the template within the image. If the
sourceImage has a selection, the template needs not
be specified as the selection is used as the
template. The argument normalize is set to true/
false (default = false) to set if the source and
template are normalized to zero mean before the
cross correlation is taken. Equivalent to
“TemplateMatch”

FindPeaks
SUMMARY Finds peaks in an image

SYNTAX void FindPeaks(Image, [number minValueForPeak],
[number minPeakDistance], [number cmRadius], [number
distanceFromEdgde])

SYNTAX void image.FindPeaks([number minValueForPeak] ,
[number minPeakDistance], [number cmRadius], [number
distanceFromEdgde])

DESCRIPTION Look for maxima in the image. minValueForPeak is the
smallest value in the image to be considered to be a

peak. CmRadius is the center of mass radius used for
defining the peak. minPeakDistance is the smallest
distance allowed between peaks. distanceFromEdgde is
the closest proximity to the edge of the image that
is searched for peaks. Default values if not
specified are: minValueForPeak = imageMax -
0.2*imageRange, minPeakDistance = 0, cmRadius = 0 ,
distanceFromEdgde = 0

FitDoublePeaks
SUMMARY Fits a peak list to a set of double peaks (two peaks

are close)

SYNTAX void FitDoublePeaks(image [number maxPeakSeparation]
[, number outputTable])

DESCRIPTION Fits the peaks found in an image to a set of
Gaussian peaks. Peaks within a given distance
maxPeakSeparation (default = 10 pixels) are
considered to be closely spaced Gaussian peaks.
Optionally the parameters for the peaks can be
output as a table (outputTable = false by default).
The peaks in the image peaklist are updated to
reflect the Gaussian fit.

FitExponentials
SUMMARY Fits the peaks in a peak list to Exponential peaks

SYNTAX void FitExponentials(image [, number output = 0]
[,number pixelsAcrossPeak = 26] [,number
minNumberofPixelsInPeak = 100])

DESCRIPTION Fits the peaks found in an image to a set of
Exponential peaks. Optionally the parameters for the
peaks can be output as a table [1] or written to the
log window[2]. pixelsAcrossPeak is an estimate of
the numbers of pixels across the entire peak.
minNumberofPixelsInPeak represents a minimum number
of pixels that must be in a peak. The peaks in the
image peaklist are updated to reflect the fit.

FitGaussians
SUMMARY Fits the peaks in a peak list to Gaussian peaks

SYNTAX void FitGaussians(image [, number output = 0]
[,number pixelsAcrossPeak = 26] [,number
minNumberofPixelsInPeak = 100])

DESCRIPTION Fits the peaks found in an image to a set of
Gaussian peaks. Optionally the parameters for the
peaks can be output as a table [1] or written to the
log window[2]. pixelsAcrossPeak is an estimate of
the numbers of pixels across the entire peak.
minNumberofPixelsInPeak represents a minimum number
of pixels that must be in a peak. The peaks in the
image peaklist are updated to reflect the fit.

FitLattice
SUMMARY Fits an existing lattice to a peaklist

SYNTAX void FitLattice(image [, number maxDeviation])

DESCRIPTION The lattice defined on the image will be refined to
minimize the sum squared distance from the lattice
to the peaks in the peak list. Only peaks lying
within the distance maxDeviation (fraction of a
lattice vector) will be used in the fitting routine.

FitParabolas
SUMMARY Fits the peaks in a peak list to Parabolic peaks

SYNTAX void FitParabolas(image [, number output = 0]
[,number pixelsAcrossPeak = 26] [,number
minNumberofPixelsInPeak = 100])

DESCRIPTION Fits the peaks found in an image to a set of
Parabolic peaks. Optionally the parameters for the
peaks can be output as a table [1] or written to the
log window[2]. pixelsAcrossPeak is an estimate of
the numbers of pixels across the entire peak.
minNumberofPixelsInPeak represents a minimum number
of pixels that must be in a peak. The peaks in the
image peaklist are updated to reflect the fit.

FitPeaks
SUMMARY Fits the peaks in a peak list to Gaussian/

Exponential peaks

SYNTAX void FitPeaks(image [, number output = 0] [, number
peakShape = 0] [,number pixelsAcrossPeak = 26]
[,number minNumberofPixelsInPeak = 100])

DESCRIPTION Fits the peaks found in an image to a set of
Gaussian peaks. Optionally the parameters for the
peaks can be output as a table [1] or written to the
log window[2]. peakShape (0=Gaussian),
(1=Exponential). pixelsAcrossPeak is an estimate of
the numbers of pixels across the entire peak.
minNumberofPixelsInPeak represents a minimum number
of pixels that must be in a peak. The peaks in the
image peaklist are updated to reflect the fit.

FlipHorizontal
SUMMARY Flips an image horizontally (around the vertical

axis)

SYNTAX void FlipHorizontal(image)

SYNTAX void image.FlipHorizontal() // Class member

FlipVertical
SUMMARY Flips an image vertically (around the horizontal

axis)

SYNTAX void FlipVertical(image)

SYNTAX void image.FlipVertical() // Class member

floor
SUMMARY Limits all values of a real image to a given minimum

value

SYNTAX image floor(image , number)

SYNTAX void image.floor(number) Image member function

DESCRIPTION Sets all values < minVal to minVal

Gamma
SUMMARY Calculates the gamma of a real number

SYNTAX number Gamma(number)

DESCRIPTION

GammaP
SUMMARY Calculates the incomplete gamma function

SYNTAX number GammaP(number , number)

DESCRIPTION

GammaQ
SUMMARY Calculates the complement of the incomplete gamma

function

SYNTAX number GammaQ(number , number)

DESCRIPTION

GammaRandom*
SUMMARY Calculates a random number with gamma distribution

SYNTAX number GammaRandom()

DESCRIPTION *Not Implemented

GaussianLowPassFilter
SUMMARY Applies a Gaussian low pass filter

SYNTAX image GaussianLowPassFilter(image, number sigma)

DESCRIPTION Applies a Gaussian low pass filter of sigma in the
units of calibration unit of the image

GaussianHighPassFilter
SUMMARY Applies a Gaussian high pass filter

SYNTAX image GaussianHighPassFilter (image, number sigma)

DESCRIPTION Applies a Gaussian High pass filter of sigma in the
units of calibration unit of the image

GaussianRandom*
SUMMARY Calculates a random number with gaussian

distribution

SYNTAX number GaussianRandom()

DESCRIPTION

GetAnnotationRect

SUMMARY Gets the rectangle of the annotation

SYNTAX void GetAnnotationRect(Image, Number annotationID,
NumberVariable top, NumberVariable left,
NumberVariable bottom, NumberVariable right)

GetCalibration
SUMMARY Returns the calibration of the image

SYNTAX void GetCalibration(image, numbervariable scalex,
numbervariable scaley)

SYNTAX void GetCalibration(image, numbervariable scale)

SYNTAX number GetCalibration(image)

SYNTAX number image.GetCalibration() // Image Class Member
Function

DESCRIPTION In general the scale return for a single number is
the value stored in scaleX, which is normally the
same as scaleY

GetCalibrationUnit
SUMMARY Returns the calibration unit of the image

SYNTAX number GetCalibrationUnit(image)

SYNTAX String image.GetCalibrationUnit () // Image Class
Member Function

DESCRIPTION The non-class function returns a number. The index
numbers for the calibration units are: 0 – Pixels, 1
– Å, 2 – nanometer, 3 – 1/Pixels, 4 – 1/Å, 5 – 1/nm.
The class member function returns a string
representation of the unit

GetHeight
SUMMARY Returns the height in pixels of an image

SYNTAX number GetHeight(image)

GetImage
SUMMARY Returns a 2D image from a given position (z) in a

volume image

SYNTAX image image3D.GetImage(number whichImage)

DESCRIPTION Returns an image which is a copy of the image at the
given depth in the volume image. The range for
whichImage is 0 – (Depth-1)

GetKey

SUMMARY Returns key

SYNTAX Number GetKey(void)

DESCRIPTION Returns the key that was last pressed as a number.

GetLattice
SUMMARY Returns the lattice (if defined) for the image

SYNTAX image GetLattice(image)

SYNTAX image image.GetLattice()

DESCRIPTION The lattice is returned in a 2 by 3 image. OriginX
is Lattice(0,0). OriginY is Lattice(1,0). UX is
Lattice(0,1). UY is Lattice(1,1). VX is
Lattice(0,2). VY is Lattice(1,2).

GetName
SUMMARY Return the name of the image

SYNTAX string GetName(image)

SYNTAX void GetName(image, stringvariable name)

SYNTAX string image.GetName() // Image Class member
function

GetNamedImage
SUMMARY Return the image with a given name

SYNTAX image GetNamedImage(string name)

SYNTAX void GetNamedImage(image , string name)

GetNumber
SUMMARY Prompt for a number using an OkCancelDialog. Returns

0 (False) if cancel is pressed. 1 (True) otherwise.

SYNTAX number GetNumber (string prompt, NumberVariable
val)

SYNTAX number GetNumber (string prompt, number default,
NumberVariable val)

GetNumberedImage
SUMMARY Return the image with a given name

SYNTAX image GetNumberedImage (number num)

SYNTAX void GetNumberedImage (image destImage, number num)

DESCRIPTION Returns the image with the label/tag A# as in A0,
A1, A2 etc…

GetNthAnnotationID

SUMMARY Get the ID of an annotation

SYNTAX Number GetNthAnnotationID(Image, Number index)

DESCRIPTION Returns the ID of the index'th annotation in the
image.

GetPeakList
SUMMARY Returns the peaklist (if defined) for the image

SYNTAX image GetPeakList(image)

SYNTAX image image.GetPeakList() // class member

DESCRIPTION Reaturns the peak list in the form of an image of
size 3 by numberPeaks. Column 0 – xposition, Column
1 – yposition, Column 2 - peakValue

GetPixel
SUMMARY Returns the pixel value for a given pixel

SYNTAX number GetPixel(image, number x, number y)

SYNTAX complexnumber GetPixel(compleximage, number x,
number y)

SYNTAX number image.GetPixel(number x, number y)

SYNTAX complexnumber compleximage.GetPixel(number x, number
y)

GetPixelAmplitude
SUMMARY Returns the pixel amplitude for a given pixel in a

complex image

SYNTAX number GetPixelAmplitude(compleximage, number x,
number y))

GetPixelPhase
SUMMARY Returns the pixel phase for a given pixel in a

complex image

SYNTAX number GetPixelPhase(compleximage, number x, number
y))

GetScale
SUMMARY Returns the scale/calibration of an image

SYNTAX void GetScale(image, numbervariable scalex,
numbervariable scaley)

SYNTAX void GetScale(image, numbervariable scale)

SYNTAX number GetScale(image)

SYNTAX number image.GetScale() // Image Class Member
Function

DESCRIPTION In general the scale return for a single number is
the value stored in scaleX, which is normally the
same as scaleY

GetSelection

SUMMARY Gets the selection rectangle of an image

SYNTAX Boolean GetSelection(Image, NumberVariable top,
NumberVariable left, NumberVariable bottom,
NumberVariable right)

DESCRIPTION Sets the given coordinate variables to the
coordinates of the current selection in the given
image. If the image has no selection, the
coordinates are set to the size of the image.
Returns true if there was a selection, false if not.

GetSize
SUMMARY Returns the size of an image

SYNTAX void GetSize(image, numbervariable width,
numbervariable height)

SYNTAX void image.GetSize(numbervariable width,
numbervariable height) // Class member function

SYNTAX void image3D.GetSize(numbervariable width,
numbervariable height, numbervariable depth) //
Class member function

GetSurveyMode
SUMMARY Gets the method of survey technique for setting

black and white values

SYNTAX Number mode = GetSurveyMode(Image)

DESCRIPTION mode = 0 CrossHair . mode = 1 Entire Image,
Equivalent to GetSurveyTechnique

GetSurveyTechnique
SUMMARY Sets the method of survey technique for setting

black and white values

SYNTAX Number mode = GetSurveyTechnique (Image)

DESCRIPTION mode = 0 CrossHair . mode = 1 Entire Image,
Equivalent to GetSurveyMode

GetTwoImages

SUMMARY Two image dialog

SYNTAX Boolean GetTwoImages(String title, ImageVariable
image1, ImageVariable image2)

DESCRIPTION Puts up an Ok-Cancel dialog box and allows the user
to choose two images. Returns true for Ok and false
for Cancel.

GetTwoImagesWithPrompt

SUMMARY Two image dialog with prompt

SYNTAX Boolean GetTwoImagesWithPrompt(String prompt,
String title, ImageVariable image1, ImageVariable
image2)

DESCRIPTION Puts up an Ok-Cancel dialog box and allows the user
to choose two images. Returns true for Ok and false
for Cancel.

GetVoxel
SUMMARY Gets the voxel value at position (x,y,z)

SYNTAX number image3D.GetVoxel(number x,number y,number z)

SYNTAX complexnumber compleximage3D.GetVoxel(number
x,number y,number z)

GetWidth
SUMMARY Returns the width in pixels of an image

SYNTAX number GetWidth(image)

GetWindowPosition
SUMMARY Returns the window position of an image

SYNTAX void GetWindowPosition(image numbervariable left,
numbervariable top)

GetWindowSize
SUMMARY Returns the window size for a displayed image

SYNTAX void GetWindowSize (image numbervariable width,
numbervariable height)

HasLattice
SUMMARY Returns true/false if a lattice is defined on an

image

SYNTAX number HasLattice(image)

SYNTAX number image.HasLattice() // class member

HasPeaklist
SUMMARY Returns true/false if a peak list is defined on an

image

SYNTAX number HasPeaklist(image)

SYNTAX number image.HasPeaklist() // class member

Height
SUMMARY Returns the height (in pixels) of an image

SYNTAX number image.height() // Image Member Function

SYNTAX number image3D.height() // Image3D Member Function

Highpass
SUMMARY Returns an image resulting from the application of a

Annular High Pass filter to an image

SYNTAX image Highpass(image , number cutoff [, number
edgewidth])

DESCRIPTION Equivalent to AnnularHighPassFilter. edgewidth by
default is set to 0 and represents a soft edge

Highpassfilter
SUMMARY Returns an image resulting from the application of a

Annular High Pass filter to an image

SYNTAX image Highpassfilter(image , number cutoff [,
number edgewidth])

DESCRIPTION Equivalent to AnnularHighPassFilter. edgewidth by
default is set to 0 and represents a soft edge

HorizontalProjection
SUMMARY Returns an image resulting projecting the pixels

(summed) onto the horizontal (x) axis

SYNTAX image HorizontalProjection(image)

IFFT
SUMMARY Takes the inverse Fourier transform of a complex

image, a complex volume image or a complex image
within an imagestack or the entire imagestack

SYNTAX image ifft(compleximage)

SYNTAX image3D ifft(image3D)

SYNTAX void image.ifft() Image member function

SYNTAX void image3D.ifft() Image member function

SYNTAX void imagestack.ifft(number) Image member function

SYNTAX void imagestack.ifft() Image member function

imaginary / imag
SUMMARY Returns the imaginary portion of a complex number/

image as a real number/image

SYNTAX number imaginary(complexnumber)

SYNTAX image imaginary(compleximage)

SYNTAX void image.imaginary() Image member function

SYNTAX number complexnumber.imag() complex number member
function

intensity
SUMMARY Returns the modulus square of a complex number/image

as a real number/image

SYNTAX number intensity(complexnumber)

SYNTAX image intensity(compleximage)

SYNTAX void image.intensity() Image member function

Inverse
SUMMARY Inverts an image

SYNTAX void image.Inverse() // Member function

Invert
SUMMARY Inverts an image

SYNTAX image Inverse (image)

SYNTAX void image.Inverse() // Member function

IsAnnotationSelected

SUMMARY Checks if an annotation is selected

SYNTAX Boolean IsAnnotationSelected(Image, Number
annotationID)

DESCRIPTION Returns true if the annotation specified by the
annotation ID in the given image is selected;
returns true otherwise.

Laplacian
SUMMARY Takes the Laplacian of a real image

SYNTAX image Laplacian(image)

SYNTAX void image.Laplacian() // Member function

LegendrePolynomial
SUMMARY Calculates the Legendre polynomial function

SYNTAX number LegendrePolynomial(number, number, number)

DESCRIPTION

log
SUMMARY Calculates the natural logarithm of a real number or

a real image

SYNTAX number log(number)

SYNTAX image log(image)

SYNTAX void image.log() Image member function

log1
SUMMARY Calculates the logarithm of a real number or a real

image after first adding 1

SYNTAX number log1(number)

SYNTAX image log1(image)

SYNTAX void image.log1() Image member function

DESCRIPTION First the argument is changed by adding 1 (useful
when the image contains 0’s) and then the logarithm
is taken

log2
SUMMARY Calculates the logarithm base 2 of a real number or

a real image

SYNTAX number log2(number)

SYNTAX image log2(image)

SYNTAX void image.log2() Image member function

log10
SUMMARY Calculates the logarithm base 10 of a real number or

a real image

SYNTAX number log10(number)

SYNTAX image log10(image)

SYNTAX void image.log10() Image member function

Lowpass
SUMMARY Returns an image resulting from the application of

an Annular Low Pass filter to an image

SYNTAX image AnnularLowPassFilter(image , number cutoff [,
number edgewidth])

DESCRIPTION Equivalent to AnnularLowPassFilter. edgewidth by
default is set to 0 and represents a soft edge

Lowpassfilter
SUMMARY Returns an image resulting from the application of

an Annular Low Pass filter to an image

SYNTAX image Lowpassfilter(image , number cutoff [, number
edgewidth])

DESCRIPTION Equivalent to AnnularLowPassFilter. edgewidth by
default is set to 0 and represents a soft edge

MatrixDeterminant*
SUMMARY Returns the determinant of a matrix

SYNTAX number MatrixDeterminant (image)

DESCRIPTION *Not Implemented

MatrixInverse*
SUMMARY Inverts a real matrix

SYNTAX image MatrixInverse (image)

DESCRIPTION *Not Implemented

MatrixMultiply
SUMMARY Does a matrix multiplication of two real images

SYNTAX image MatrixMultiply (image, image)

MatrixPrint*
SUMMARY Prints out the values of a matrix / image

SYNTAX void MatrixPrint(image)

DESCRIPTION *Not Implemented

MatrixTranspose
SUMMARY Transposes the matrix representation of a real image

SYNTAX image MatrixTranspose (image)

max
SUMMARY Returns the maximum value of a real image. Can also

return the positions of the maximum. Calculate the
min of two real number expressions or two images

SYNTAX number max(image)

SYNTAX number max(image, number xpos, number ypos)

SYNTAX number max(number, number)

SYNTAX void max(number, number , numbervariable result)

SYNTAX image max(image, image)

SYNTAX void max(image, image, imagevariable result)

SYNTAX number image.max() Image member function

SYNTAX number image.max(number xpos, number ypos) Image
member function

Maximum*
SUMMARY Calculates the maximum of a given list of real

numbers

SYNTAX number minimum (number, number, ...) up to a
maximum of 16 arguments

DESCRIPTION *Not yet implemented

mean
SUMMARY Returns the mean value of a real image.

SYNTAX number max(image)

SYNTAX number image.mean() Image member function

meansquare
SUMMARY Returns the mean square value of a real image.

SYNTAX number meansquare(image)

SYNTAX number image.meansquare() Image member function

median
SUMMARY Returns the median value of a real image or a list

of numbers.

SYNTAX number median(image)

SYNTAX number median(number x1, number x2, number x3…) up
to a maximum of 16 arguments

min
SUMMARY Returns the minimum value of a real image. Can also

return the positions of the minimum. Calculate the
min of two real number expressions or two images

SYNTAX number min(image)

SYNTAX number min(image, number xpos, number ypos)

SYNTAX number min(number, number)

SYNTAX void min(number, number, numbervariable result)

SYNTAX image min(image, image)

SYNTAX void min(image, image, imagevariable result)

SYNTAX number image.min() Image member function

SYNTAX number image.min(number xpos, number ypos) Image
member function

Minimum*
SUMMARY Calculates the minimum of a given list of real

numbers

SYNTAX number minimum (number, number, ...) up to a
maximum of 16 arguments

DESCRIPTION *Not yet implemented

modsq
SUMMARY Returns the modulus squareof a complex number

SYNTAX number complexnumber.modsq() // complex number
member function

modulus
SUMMARY Returns the modulus of a complex number/image/

image3D as a real number/image

SYNTAX number modulus(complexnumber)

SYNTAX image modulus(compleximage)

SYNTAX number complexnumber.modulus() // complex number
member function

SYNTAX void image.modulus() // Class Member Function

SYNTAX void image3D.modulus()// Class Member Function

MoveAnnotation

SUMMARY Moves an annotation

SYNTAX void MoveAnnotation(Image, Number annotationID,
Number top, Number left, Number bottom, Number right
)

DESCRIPTION Moves the annotation specified by annotation ID in
the given image to the specified coordinates.

Negate
SUMMARY Returns the inverse of an image

SYNTAX image Negate(image)

NewImage
SUMMARY Creates a real image of a given size

SYNTAX image NewImage(string title, number width, number
height)

SYNTAX image NewImage(number width, number height)

norm
SUMMARY Calculates the norm of a real/complex number or a

real/complex image.

SYNTAX number norm(number)

SYNTAX number norm(complexnumber)

SYNTAX realimage norm(image)

SYNTAX realimage norm(compleximage)

SYNTAX void image.norm() Image member function

DESCRIPTION The norm of the real number is its square. The norm
of a complex number is its modulus square.

OffsetAnnotation

SUMMARY Offsets an annotation

SYNTAX void OffsetAnnotation(Image, Number annotationID,
Number deltax, Number deltay)

DESCRIPTION Offsets the annotation specified by annotation ID in
the given image by the specified offsets.

OkDialog

SUMMARY Ok dialog

SYNTAX void OkDialog(String prompt)

DESCRIPTION Puts up a dialog with an Ok button

OpenAndSetProgressWindow

SUMMARY Opens and sets the progress window

SYNTAX void OpenAndSetProgressWindow(String line1, String
line2, String line3)

OpenImage
SUMMARY Creates an image from an existing image file

SYNTAX image open(string filename)

SYNTAX void open(string filename, number width, number
height [number type = 7 (real)] [, number byteOffset
= 0] [, number swapBytes = 0])

DESCRIPTION Opens an existing image. If the image is fully
specified by its internal structure and is
supported, only the filename is needed as long as
the path is set properly beforehand. If the image

file contains raw image data, then image width,
height and optionally type, offset and swapbytes are
needed.

OpenLogWindow

SUMMARY Opens the output window

SYNTAX void OpenLogWindow (void)

OpenResultsWindow

SUMMARY Opens the results window

SYNTAX void OpenResultsWindow(void)

DESCRIPTION Equivalent to OpenLogWindow. DM compatibility
function

OpenWithDialog
SUMMARY Creates an image from an existing image file chosen

through a file dialog

SYNTAX image OpenWithDialog()

OptionDown

SUMMARY Returns true/false depending on if the Option key is
down or not

SYNTAX Boolean OptionDown(void)

DESCRIPTION Returns 1 if the option key is down and 0 otherwise.

PadWithMean
SUMMARY Pads an image with its mean value to specified

dimensions

SYNTAX void image.PadWithMean(number newWidth, number
newHeight) // class member

PadWithZero
SUMMARY Pads an image with zero to specified dimensions

SYNTAX void image.PadWithZero(number newWidth, number
newHeight) // class member

Pi
SUMMARY Returns an approximation of π One can also just

write Pi which is a predefined constant

SYNTAX number pi()

phase
SUMMARY Returns the phase of a complex number/image/image3D

as a real number/image

SYNTAX number phase(complexnumber)

SYNTAX image phase(compleximage)

SYNTAX number complexnumber.phase() // complex number
member function

SYNTAX void image.phase() // Image member
function

SYNTAX void image3D.phase() // Image3D member
function

PhaseCorrelate
SUMMARY Returns the phase correlation between two images

SYNTAX image PhaseCorrelate (image x, image y [, number
freqCutoff])

DESCRIPTION Calculate the phase correlation between two images
but using frequencies up to a maximum frequency cut
off “freqCutoff” default freqCutoff =
0.3*maxFrequency

PhaseCorrelation
SUMMARY Returns the phase correlation between two images

SYNTAX image PhaseCorrelation(image x, image y [, number
freqCutoff])

DESCRIPTION Calculate the phase correlation between two images
but using frequencies up to a maximum frequency cut
off “freqCutoff” default freqCutoff =
0.3*maxFrequency

PoissonRandom*
SUMMARY Calculates a random number with poisson distribution

SYNTAX number PoissonRandom()

DESCRIPTION

Polar
SUMMARY Calculates the polar representation of a rectangular

complex number/image

SYNTAX complexnumber polar(complexnumber)

SYNTAX complexnumber polar(compleximage)

SYNTAX void image.polar() Image member function

DESCRIPTION Amplitude stored in real part. Phase stored in
imaginary part

Polynomial*
SUMMARY Calculates a polynomial expansion using a real image

expression

DESCRIPTION *Currently not implemented

pow
SUMMARY Calculates the exponential of a real/complex number

or a real/complex image

SYNTAX number pow(number x, number y) // x**y

SYNTAX image exp(image x, number y) // x**y

SYNTAX void image.pow(number x) Image member function

pow2
SUMMARY Calculates 2 raised to the power of a real number or

a real image

SYNTAX number pow2(number)

SYNTAX image pow2(image)

SYNTAX void image.pow2() Image member function

pow10
SUMMARY Calculates 10 raised to the power of a real number

or a real image

SYNTAX number pow10(number)

SYNTAX image pow10(image)

SYNTAX void image.pow10() Image member function

PowerSpectrum
SUMMARY Calculates the power spectrum of a real image

SYNTAX image PowerSpectrum(image)

SYNTAX void image.PowerSpectrum() // Image Member Function

product*
SUMMARY Calculates the product of a real/complex image

expression

SYNTAX Number product(RealImageExpression)

SYNTAX ComplexNumber product(ComplexImageExpression)

DESCRIPTION *Currently not implemented

PropagateWave
SUMMARY Calculates a 3D complex volume containing the wave

function at each slice for the current simulation up
to a given thickness.

SYNTAX Image3D PropagateWave(number thickness)

SYNTAX Image3D simulation.PropagateWave(number
thickness) // member function of the simulation
object

DESCRIPTION Implemented as both a standalone function for an
open simulation or as a member function of the class
simulation.

ps
SUMMARY Calculates the power spectrum of a real image

SYNTAX image ps(image)

SYNTAX void image.ps() // Image Member Function

RadialAverage
SUMMARY Returns the radial average of an image

SYNTAX image RadialAverage(image sourceImage [, number
mode])

DESCRIPTION Creates a new image of type mode that is a
representation of the radial average of sourceImage.
The optional argument mode represents: Mode = 1D ,
Mode = 1 2D Split Plane , Mode = 2 2D

ReadPeakList
SUMMARY Returns the peak list from a file

SYNTAX image ReadPeakList(string filename)

DESCRIPTION Returns the peak list in an image by reading a file
containg the list of peaks (saved by the program as
a tab-delimited text file). The peaklist can then be
associated with an existing image through the
SetPeakList function.

real
SUMMARY Returns the real part of a complex number/image as a

real number/image

SYNTAX number real(complexnumber)

SYNTAX image real(compleximage)

SYNTAX number complexnumber.real() // complex number
member function

SYNTAX void image.real() // Image member
function

RealImage
SUMMARY Creates a real image of a given size

SYNTAX image RealImage(string title, number numBytes,
number width, number height)

SYNTAX image RealImage(number width, number height)

DESCRIPTION Creates a real floating point image. Only 4 byte
real numbers are supported

RealFFT
SUMMARY Takes the forward Fourier transform of an image

SYNTAX image Realfft(image)

DESCRIPTION This does not compute a packed Fourier transform as
in DM, but is present so that there is an equivalent
syntax to DM scripting

Remainder
SUMMARY Calculates the integer remainder for real numbers or

real images

SYNTAX number remainder(number)

SYNTAX image remainder(image)

DESCRIPTION

Rect
SUMMARY Calculates the rectangular representation of a polar

complex number/image

SYNTAX complexnumber rect(complexnumber)

SYNTAX complexnumber rect(compleximage)

SYNTAX void image.rect() Image member function

RemoveCCDDefects
SUMMARY Corrects for CCD detector bad pixels in a real image

(ccd)

SYNTAX image RemoveCCDDefects(image)

SYNTAX void image.RemoveCCDDefects() //Member function

DESCRIPTION Equivalent to “ccd”

repeat
SUMMARY Repeats an image/image3D in the 2 or 3 dimensions

SYNTAX image repeat(image, number nx, number ny)

SYNTAX void image.repeat(number nx, number ny) Image
member function

SYNTAX void image3D.repeat(number nx, number ny, number nz)
Image3D member function

Resize
SUMMARY Resizes an image

SYNTAX image Resize(image , number width, number height)

SYNTAX void image.Resize(number width, number height)

DESCRIPTION Resizes the image using interpolation

RMS
SUMMARY Calculates the root mean square value of a real

image

SYNTAX number rms(image)

SYNTAX number image.rms() Image member function

Rotate
SUMMARY Rotates a 2D image clockwise by a given angle

SYNTAX image rotate(image, number angle)

SYNTAX void image.rotate(number angle)

RotateLeft
SUMMARY Rotates an image anti-clockwise an image by 90 deg.

SYNTAX image rotateleft(image, number angle)

SYNTAX void image.rotateleft(number angle)

RotateRight
SUMMARY Rotates an image clockwise an image by 90 deg.

SYNTAX image rotateright(image, number angle)

SYNTAX void image. rotateright(number angle)

RotateX
SUMMARY Rotates a volume image (image3D) clockwise about x

SYNTAX void image3D.rotatex(number angle)

RotateY
SUMMARY Rotates a volume image (image3D) clockwise about y

SYNTAX void image3D.rotatey(number angle)

RotateZ
SUMMARY Rotates a volume image (image3D) clockwise about z

SYNTAX void image3D.rotatez(number angle)

round
SUMMARY rounds to the nearest integer a real number or a

real image

SYNTAX number round(number)

SYNTAX image round(image)

SYNTAX void image.round() Image member function

SaveImage
SUMMARY Save the image

SYNTAX void SaveImage (image theImage, string fileName [,
number type])

DESCRIPTION Saves the peak data to a given file, as the
specified file type. Default type = current type.
Type = 1 (ascii file), type = 2 (binary) , type = 3
(tiff)

SavePeaks
SUMMARY Save the peaks in a peak list to a file

SYNTAX void SavePeaks(image theImage, string fileName [,
number type])

DESCRIPTION Saves the peak data to a given file, as the
specified file type. Type = 1 (default, text file),
type = 2 – Tempas file

SavePeaksWithDialog
SUMMARY Save the peaks in a peak list to a file after

prompting for filename and location

SYNTAX void SavePeaks(image theImage[, number type])

DESCRIPTION Saves the peak data to a given file, as the
specified file type. Type = 1 (default, text file),
type = 2 – Tempas file

SelectAnnotation

SUMMARY Selects an annotation

SYNTAX void SelectAnnotation(Image, Number annotationID)

DESCRIPTION Selects the annotation specified by the annotation
ID in the given image.

Set

SUMMARY Sets the real and imaginary part of a complex number

SYNTAX void complexnumber.set(number x,number y) // complex
number member function

SetAnnotationBackground*

SUMMARY Sets the background of an annotation

SYNTAX void SetAnnotationBackground(Image, Number
annotationID, Number background)

SetAnnotationColor

SUMMARY Sets the RGB Color of the Annotation

SYNTAX void SetAnnotationColor(Image, Number annotationID,
Number red, Number green, Number blue)

SetAnnotationFace*

SUMMARY Sets the text face of an annotation

SYNTAX Sets the type face of the annotation specified by
the annotation ID in the given image.

SetAnnotationFont

SUMMARY Sets the text justification of an annotation

SYNTAX void SetAnnotationJustification(Image, Number
annotationID, Number justification)

DESCRIPTION Sets the justification of the text annotation
specified by the annotation ID in the given image.

SetAnnotationJustification*

SUMMARY Sets the text justification of an annotation

SYNTAX void SetAnnotationJustification(Image, Number
annotationID, Number justification)

SetAnnotationRect

SUMMARY Sets the rect of an annotation

SYNTAX void SetAnnotationRect(Image, Number annotationID,
Number top, Number left, Number bottom, Number right
)

DESCRIPTION Moves the annotation specified by annotation ID in
the given image to the specified coordinates.

SetAnnotationSize

SUMMARY Sets the text size of an annotation

SYNTAX void SetAnnotationSize(Image, Number annotationID,
Number textSize)

DESCRIPTION Sets the size of text of the annotation specified by
the annotation ID in the given image.

SetBlackWhite
SUMMARY Sets the black and white display limits of an image

SYNTAX void image.SetBlackWhite(number black, number
white) // Member function

DESCRIPTION Sets the limits for what is to be displayed as black
and white. Values <= black are all displayed as
black. Values >= white are all displayed as white.

SetCalibration
SUMMARY Sets the calibration and possibly calibration unit

of an image

SYNTAX void SetCalibration(image , number calibration)

SYNTAX void SetCalibration(image , number calibration,
number calibrationunit)

DESCRIPTION The index numbers for the calibration units are: 0 –
Pixels, 1 – Å, 2 – nanometer, 3 – 1/Pixels, 4 – 1/Å,
5 – 1/nm

SetCalibrationUnit
SUMMARY Sets the calibration unit of an image

SYNTAX void SetCalibrationUnit(image , number
calibrationunit)

DESCRIPTION The index numbers for the calibration units are: 0 =
Pixels, 1 = Å, 2 = nanometer, 3 = 1/Pixels, 4 = 1/Å,
5 = 1/nm

SetImage
SUMMARY Sets a 2D image at a given position (z) in the

volume image

SYNTAX void image3D.SetImage(image, number
whichposition) // Member function

DESCRIPTION Copies an existing image into the depth
“whichposition” (0 – (depth-1)) in a volume image

SetDisplayType
SUMMARY Sets the type of display of an image

SYNTAX SetDisplayType(image img, number type)

SetDisplayType(Image, string type) type = “raster”,”
surface”,”rgb”,”line”,”table”,”argand”,”complex”.
String is case insensitive

SYNTAX void image.SetDisplayType(number type // Member
function

void image.SetDisplayType(string type) type =
“raster”,”surface”,”rgb”,”line”,”table”,”argand”,”
complex”. String is case insensitive

DESCRIPTION types : 1=Raster Image , 2=Surface Plot , 3=RGB, 4
Line Plot , 5-Table , Types 3 is not implemented

SetImageSpace
SUMMARY Sets the space (real/reciprocal) of an image

SYNTAX void image.SetImageSpace(number space) // Member
function

SYNTAX void image3D.SetImageSpace(string space) // Member
function

DESCRIPTION space = 0 Real space , space = 1 Reciprocal Space

space = “real”, space = “reciprocal”

SetLimits
SUMMARY Sets the black and white display limits of an image

SYNTAX SetLimits(image, number black, number white)

SYNTAX void image.SetLimits (number black, number white)
// Member function

Equivalent to the member function SetBlackWhite

DESCRIPTION Sets the limits for what is to be displayed as black
and white. Values <= black are all displayed as
black. Values >= white are all displayed as white.

SetName
SUMMARY Sets the name of an image

SYNTAX void SetName(image , string)

SYNTAX void image.SetName(string) // Image Member Function

SetPeakList
SUMMARY Associated an image with an existing peaklist.

SYNTAX void SetPeakList(image theImage, image peaklist)

DESCRIPTION After reading in a peaklist from a file or getting
the peaklist from an image, this peaklist can be
associated with a desired existing image. The
dimensions of the image to be associated the
peaklist must be of the same dimensions as the image
from which the peaklist originated for this to make
sense.

SetPixel
SUMMARY Sets a specified pixel to a given value

SYNTAX void SetPixel(image , number x, number y, number
val)

SYNTAX void SetPixel(compleximage ,number x, number y,
number val)

SYNTAX void SetPixel(compleximage ,number x, number y,
complexnumber val)

SYNTAX void image.SetPixel(number x, number y, number
val) // Member function

SYNTAX void compleximage.SetPixel(number x, number y,
number val) // Member function

SYNTAX void compleximage.SetPixel(number x, number y,
complexnumber val) // Member function

SetPixelAmplitude*
SUMMARY Sets the pixel amplitude for a given pixel in a

complex image

SYNTAX void SetPixelAmplitude(image, number x, number y,
number amplitude)

SYNTAX void image.SetPixelAmplitude(number x, number y,
number amplitude) Image member function

DESCRIPTION

SetPixelPhase
SUMMARY Sets the pixel phase for a given pixel in a complex

image

SYNTAX void SetPixelPhase(image, number x, number y, number
phase)

SYNTAX void image.SetPixelPhase(number x, number y, number
phase) Image member function

DESCRIPTION

SetSelection

SUMMARY Sets the selection rectangle of an image

SYNTAX void SetSelection(Image, Number top, Number left,
Number bottom, Number right)

DESCRIPTION Sets the selection of the given image to the
coordinates.

SetScale
SUMMARY Sets the scale/calibration of an image

SYNTAX void SetScale(image , number scale)

SYNTAX void SetScale(image , number scaleX, number scaleY)

DESCRIPTION Sets the x and y scale, the number of units per
pixel in x and y

SetSurveyMode
SUMMARY Sets the method of survey technique for setting

black and white values

SYNTAX void SetSurveyMode(Image, Number mode)

DESCRIPTION mode = 0 CrossHair . mode = 1 Entire Image,
Equivalent to SetSurveyTechnique

SetSurveyTechnique
SUMMARY Sets the method of survey technique for setting

black and white values

SYNTAX void SetSurveyTechnique(Image, Number mode)

DESCRIPTION mode = 0 CrossHair . mode = 1 Entire Image,
Equivalent to SetSurveyMode

SetVoxel
SUMMARY Sets the voxel value at position (x,y,z)

SYNTAX image3D.SetVoxel(number x, number y, number z,
number value)

SYNTAX compleximage3D.SetVoxel(number x, number y, number
z, complexnumber value)

SetWindowPosition
SUMMARY Sets the window position of an image

SYNTAX void SetWindowPosition(image, number left, number
top)

DESCRIPTION

SetWindowSize
SUMMARY Sets the window size for a displayed image

SYNTAX void SetWindowSize(image, number width, number
height)

Sharpen
SUMMARY Applies a Sharpening Filter to a real image

SYNTAX void Sharpen(image) // In place operation

DESCRIPTION Does a sharpening operation on real image in place

Shift
SUMMARY Shifts the position (0,0) to a new position (sx,sy)

in the image

SYNTAX image Shift(image, number sx, number sy)

SYNTAX void Shift(image) // sx = W/2 , sy = H/2 In
place operation

SYNTAX void image.Shift(number sx, number sy)

ShiftAnnotation

SUMMARY Shifts the position of an annotation

SYNTAX void SetAnnotationRect(Image, Number annotationID,
Number shiftX, Number shiftY)

ShiftCenter
SUMMARY Shifts the position (0,0) to the position (W/2,H/2)

in the image

SYNTAX void ShiftCenter(Image) // In place operation

SYNTAX void Image.ShiftCenter() // Member function

DESCRIPTION Shifts each dimension of an image by half. For two
dimensional images it will swap quadrants.

ShiftDown

SUMMARY Returns true/false depending on if the Shift key is
down or not

SYNTAX Boolean ShiftDown(void)

DESCRIPTION Returns 1 if the shift key is down and 0 otherwise.

ShiftImageFocus
SUMMARY Propagates a complex image or wave function by a

distance focus

SYNTAX void ShiftImageFocus(compleximage source, number
focus [, number voltage = 300] [, number sampling =
0.2])

DESCRIPTION The focus variation (or constant) is given in the
image focus. The complex image is propagated over
the distance focus. By default the voltage is 300kV.
If the source is calibrated in Ångstrom or
nanometer, the sampling is taken from the source.
Otherwise the default is 0.2 Å/pixel and must be set
if different.

ShiftOrigin
SUMMARY Shifts the position (0,0) to the position (sx,sy) in

the image

SYNTAX image ShiftOrigin(Image, number sx, number sy)

SYNTAX void ShiftOrigin(Image) // sx = W/2 , sy = H/2
(in place)

SYNTAX void image.ShiftOrigin(number sx, number sy)

show
SUMMARY Displays an image. Equivalent to Display

SYNTAX void Show(image)

SYNTAX void image.Show() // Member function

SYNTAX void image3D.Show() // Member function

DESCRIPTION Equivalent to Display

ShowImage
SUMMARY Displays an image.

SYNTAX void ShowImage(image)

SYNTAX void image.ShowImage() // Member function

DESCRIPTION Equivalent to Display

sgn
SUMMARY Calculates the sign of a real number

SYNTAX RealNumberExpression sgn(RealNumberExpression)

DESCRIPTION Returns 1 if the number is equal or greater than 0
otherwise returns -1

sigma
SUMMARY Calculates the standard deviation of a real image

SYNTAX number sigma(image)

SYNTAX number image.sigma() Image member function

sin
SUMMARY Calculates the sine of a real number or a real image

SYNTAX number sin(number)

SYNTAX image sin(image)

SYNTAX void image.sin() Image member function

sinh
SUMMARY Calculates the hyperbolic sine of a real number or a

real image

SYNTAX number sinh(number)

SYNTAX image sinh(image)

SYNTAX void image.sinh() Image member function

Smooth
SUMMARY Applies a Smoothing Filter to a real image

SYNTAX image Smooth(image)

SYNTAX void image.Smooth() // Member function

Sobel
SUMMARY Applies a Sobel Filter to a real image

SYNTAX image sobel(image)

SYNTAX void image.sobel() // Member function

SpaceDown

SUMMARY Returns true/false depending on if the Space bar is
down or not

SYNTAX Boolean SpaceDown(void)

DESCRIPTION Returns 1 if the space key is down and 0 otherwise.

SphericalBesselJ
SUMMARY Calculates the spherical Bessel J function

SYNTAX number SphericalBesselJ(number, number)

DESCRIPTION

SphericalBesselY
SUMMARY Calculates the general Bessel Y function

SYNTAX number SphericalBesselY(number, number)

DESCRIPTION

sqrt
SUMMARY Calculates the square root of a real number or a

real image

SYNTAX number sqrt(number)

SYNTAX image sqrt(image)

SYNTAX void image.sqrt() Image member function

sq
SUMMARY Calculates the square of a real number or a real

image

SYNTAX number sq(number)

SYNTAX image sq(image)

SYNTAX void image.sq() Image member function

square
SUMMARY Calculates the square of a real number or a real

image

SYNTAX number square(number)

SYNTAX image square(image)

SYNTAX void image.square() Image member function

stdv
SUMMARY Calculates the standard deviation of a real image

SYNTAX number stdv(image)

SYNTAX number image.stdv() Image member function

sum
SUMMARY Calculates the sum of a real image

SYNTAX number sum(image)

SYNTAX number image.sum() Image member function

tan
SUMMARY Calculates the tangent of a real number or a real

image

SYNTAX number tan(number)

SYNTAX image tan(image)

SYNTAX void image.tan() Image member function

tanh
SUMMARY Calculates the hyperbolic sine of a real number or a

real image

SYNTAX number tanh(number)

SYNTAX image tanh(image)

SYNTAX void image.tanh() Image member function

Templatematch
SUMMARY Returns the position dependent cross-correlation

coefficient between an image and a pattern for each
position of the pattern within the image

SYNTAX image TemplateMatch(image sourceImage [. Image
template] [,number normalize])

DESCRIPTION This function performs a cross correlation between
the sourceimage and the template for each possible
position of the template within the image. If the
sourceImage has a selection, the template needs not
be specified as the selection is used as the
template. The argument normalize is set to true/
false (default = false) to set if the source and
template are normalized to zero mean before the
cross correlation is taken. Equivalent to
“FindPattern”

TimeBar*
SUMMARY Displays a timebar while evaluating real image

expression

SYNTAX RealImageExpression TimeBar(String title,
RealImageExpression expression)

DESCRIPTION *Not Implemented - Puts up a timebar with the
string as a title for the real expression.

thf
SUMMARY Applies a Threshold Filter to a real image

SYNTAX void image.thf() // Class Member function

DESCRIPTION Equivalent to ThresholdFilter

throw
SUMMARY throws an exception that can be caught by a try

statement

SYNTAX throw(number)

SYNTAX throw(string)

throwstring
SUMMARY throws an exception that can be caught by a try

statement

SYNTAX throwstring(string)

ThresholdFilter
SUMMARY Applies a Threshold Filter to a real image

SYNTAX void image.ThresholdFilter() // Class Member
function

DESCRIPTION

Transpose
SUMMARY Transposes an image

SYNTAX image Transpose(image)

SYNTAX void image.Transpose() // Class Member function

trunc
SUMMARY Truncates a real number to an integer or a real

image to integer values

SYNTAX number trunc(number)

SYNTAX image trunc(image)

SYNTAX void image.trunc() Image member function

TwoButtonDialog

SUMMARY Two button dialog

SYNTAX Boolean TwoButtonDialog(String prompt, String,
rejectLabel, String acceptLabel)

DESCRIPTION Puts up a two button dialog with the accepting and
rejecting buttons labeled according to the
parameters 'acceptLabel' and 'rejectLabel'. Returns
true for accept and false for reject.

UniformRandom*
SUMMARY Calculates a random number with uniform distribution

SYNTAX number UniformRandom()

DESCRIPTION

update
SUMMARY Updates an image that has been modified

SYNTAX void image.update() // Image member function

DESCRIPTION To ensure that an image that has been modified gets
its display representation and other statistics
reset

UpdateImage
SUMMARY Updates an image that has been modified

SYNTAX void UpdateImage(image)

DESCRIPTION To ensure that an image that has been modified gets
its display representation and other statistics
reset

ValidAnnotation

SUMMARY Checks if specified annotation exists

SYNTAX Boolean ValidAnnotation(Image, Number
annotationID)

DESCRIPTION Returns true if the annotation specified by the
annotation ID in the given image is valid; returns
false otherwise.

variance
SUMMARY Returns the variance of a real image

SYNTAX number variance(image)

SYNTAX number image.variance() Image member function

Vectorlength
SUMMARY Returns the Length of a real image as a vector

SYNTAX number VectorLength(image)

SYNTAX number image.VectorLength() Image member function

DESCRIPTION Returns the square root of the sum of the squares

VectorMap
SUMMARY Creates a vector map from two images

SYNTAX void VectorMap(image x, image y [, number
samplingX] [, number samplingY] [, number scale])

DESCRIPTION Creates and displays a vector map from two images x
and y which correspond to the x and y components of
the vectors. Vectors will be created every samplingX
(default=16) pixels and samplingY (default=16)
pixels. Vectors are drawn with the magnification
factor: scale (default=10)

VerticalProjection
SUMMARY Returns an image resulting projecting the pixels

(summed) onto the vertical (y) axis

SYNTAX image VerticalProjection(image)

Warp
SUMMARY Calculates bilinear interpolated value within a real

image

SYNTAX image warp(RealImage source, RealImageExpression
sourceX, RealImageExpression sourceY)

DESCRIPTION Transforms the source into a new image based on a
transformation of the x and y values

wf
SUMMARY Returns an image resulting from applying a Wiener

Filter to an image

SYNTAX image wf(image)

SYNTAX void image.wf() // Image Member Function

DESCRIPTION Attempts to reduce random noise in the image of a
crystalline object. Equivalent to “wienerfilter”

width
SUMMARY Returns the width of an image

SYNTAX number image.width() // Image Member Function

SYNTAX number image3D.width() // Image3D Member Function

WienerFilter
SUMMARY Returns an image resulting from applying a Wiener

Filter to an image

SYNTAX image WienerFilter(image)

SYNTAX void image.wienerfilter() // Image Member Function

DESCRIPTION Attempts to reduce random noise in the image of a
crystalline object. Equivalent to “wf”

x
SUMMARY Returns or sets the real part of a complex number

SYNTAX number complexnumber.x() // returns the real part

SYNTAX voi complexnumber.x(number) // sets the real part

y
SUMMARY Returns or sets the imaginary part of a complex

number

SYNTAX number complexnumber.y() // returns the imaginary
part

SYNTAX void complexnumber.y(number) // sets the imaginary
part

Alphabetical description of simulation script
functions

Non Member Functions

CalculateAtomicScatteringFactors
SUMMARY Calculates the atomic scattering factors for a given

atomic element and places them in a file

SYNTAX void CalculateAtomicScatteringFactors(number Z [,
number debyeWaller] [, number voltage] [, number
gMax] [, number deltaG])

DESCRIPTION Calculates the full Atomic Scatering Factors for the
element with atomic number Z for all [h,k,l] out to
gMax. Default values are: debyeWaller = 0.5 ,
voltage = 300 kV , gMax = 4.0 1/Å , deltaG – 0.1 1/Å

CalculateExitWave
SUMMARY Calculates the Exit WaveFunction(s) for the current

simulation. Optionally can use a starting wave
different from a uniform plane wave of value 1
everywhere.

SYNTAX void CalculateExitWave ()

or

CalculateExitWave(ComplexImage entranceWave)

CalculateImage
SUMMARY Calculates the simulated Images(s) for the current

simulation

SYNTAX void CalculateImage()

CalculatePotential
SUMMARY Calculates the 2D Projected Potential(s) for the

current simulation

SYNTAX void CalculatePotential()

PropagateWave
SUMMARY Calculates a 3D complex volume containing the wave

function at each slice for the current simulation up
to a given thickness.

SYNTAX Image3D PropagateWave(number thickness)

DESCRIPTION Implemented as both a standalone function for an
open simulation or as a member function of the class
simulation.

Simulation Class Member Functions

The syntax simulation.functionname() would be used as in the following example
Example:

simulation sim = getsimulation()
sumber focus = sim.getfocus()
print(focus)

Any brackets [] within the functions argument list represents optional arguments which
have default values if not specified. If any optional argument needs to be specified, all
othe optional arguments preceding it must be specified.

Calculate3DPotential
SUMMARY Calculates the 3D potential for the unit cell of the

current simulation

SYNTAX void simulation.Calculate3Dpotential (image3D
potential)

SYNTAX Image3d potential=simulation.Calculate3Dpotential()

DESCRIPTION Calculates the full 3D potential for the specimen
unit cell out to 2*gmax for all [h,k,l]. Stores the
3D complex potential in the volume image “potential”
which can be displayed using the command
“potential.display()” The volume image is created in
the process.

CalculateExitWave
SUMMARY Calculates the Exit WaveFunction(s) for the current

simulation

SYNTAX void simulation.CalculateExitWave ()

CalculateImage
SUMMARY Calculates the simulated Images(s) for the current

simulation

SYNTAX void simulation.CalculateImage()

CalculatePotential
SUMMARY Calculates the 2D Projected Potential(s) for the

current simulation

SYNTAX void simulation.CalculatePotential()

CreateFrequencyImage
SUMMARY Returns a square image of a simulated object in

reciprocal space

SYNTAX image simulation.CreateFrequencyImage (image [,
number imageSize] [, number divergenceAngle] [,
number gMax] [, number minIntensity] [, number h,
number k, number l])

DESCRIPTION Creates and returns a square image of size
imageSize*imageSize of the specified image
representing the Fourier transform of one of the
calculated types in the simulation (potential, exit
wave, image) using a sampling given by the value of
gMax (sampling = imageSize/(2*gMax)). The minimum
intensity in the pattern (the valye of black) is
10**(- minIntensity). Gaussian peaks of sigma given
by the divergenceAngle are placed on the diffraction
spots. Default values are: imageSize = 512, gMax =
gMax for the current simulation, divergenceAngle is
the value for the microscope for the simulation.
MinIntensity = 6. The optional values h,k,l are the
indicies of the desired reflection along the
positive x-axis in the diffraction pattern image.

CreateImage
SUMMARY Returns a square image from a given calculated image

of given size and sampling

SYNTAX image simulation.CreateImage(image [, number
imageSize] [, number sampling])

DESCRIPTION Creates and returns a square image of size
imageSize*imageSize of the specified image
representing one of the calculated types in the
simulation (potential, exit wave, image) using a
sampling of sampling. Default values are: whichImage
= 1 , imageSize = 512 , sampling = 0.1Å

DisplayExitWave
SUMMARY Displays a calculated exit wave

SYNTAX void simulation.DisplayExitWave([number
whichExitWave] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and displays the specified exit wave for nX
by nY unit cells, using a zoom factor. The image
will be resampled to make dx and dy the same and to
make the angle 90 degrees if necessary. Defaults
are: whichExitWave = 1, nX = 1, nY = 1, zoom = 1

DisplayExitWaveModulus
SUMMARY Displays the modulus of a calculated exit wave

SYNTAX void simulation.DisplayExitWaveModulus([number
whichExitWave] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and displays the modulus of the specified
exit wave for nX by nY unit cells, using a zoom
factor. The image will be resampled to make dx and
dy the same and to make the angle 90 degrees if
necessary. Defaults are: whichExitWave = 1, nX = 1,
nY = 1, zoom = 1

DisplayExitWavePhase
SUMMARY Displays the phase of a calculated exit wave

SYNTAX void simulation.DisplayExitWavePhase([number
whichExitWave] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and displays the phase of the specified exit
wave for nX by nY unit cells, using a zoom factor.
The image will be resampled to make dx and dy the
same and to make the angle 90 degrees if necessary.
Defaults are: whichExitWave = 1, nX = 1, nY = 1,
zoom = 1

DisplayImage
SUMMARY Displays a calculated image

SYNTAX void simulation.DisplayImage([number whichImage]
[, number nX] [, number nY] [, number zoom])

DESCRIPTION Creates and displays the specified image for nX by
nY unit cells, using a zoom factor. The image will
be resampled to make dx and dy the same and to make
the angle 90 degrees if necessary. Defaults are:
whichImage = 1, nX = 1, nY = 1, zoom = 1

DisplayPotential
SUMMARY Displays a calculated 2D projected potential

SYNTAX void simulation.DisplayPotential([number
whichPotential] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and displays the specified exit wave for nX
by nY unit cells, using a zoom factor. The image
will be resampled to make dx and dy the same and to
make the angle 90 degrees if necessary. Defaults
are: whichPotential = 1, nX = 1, nY = 1, zoom = 1

Focus
SUMMARY Sets the focus of the simulation

SYNTAX void simulation.Focus(number focus)

DESCRIPTION Sets the focus [Å] for the current simulation

GetAperture
SUMMARY Returns the radius of the outer objective lens

aperture (1/Å)

SYNTAX number simulation.GetAperture()

DESCRIPTION Equivalent to GetOuterAperture

GetApertureAngle
SUMMARY Returns the angle of the outer objective lens

aperture (mrad)

SYNTAX number simulation.GetApertureAngle()

GetApertureCenter
SUMMARY Returns the center of the objective lens aperture in

“tilt” angle (mrad) and azimuthal angle (degrees)

SYNTAX number simulation.GetApertureCenter(number theta,
number phi)

GetApertureCenterHK
SUMMARY Returns the center of the objective lens aperture in

(H,K) of the reciprocal space of the unit cell

SYNTAX void simulation.GetApertureCenterHK(number cH,
number cK)

GetCs
SUMMARY Returns the Spherical Aberration Cs in mm le of the

outer objective lens aperture (mrad)

SYNTAX number simulation.GetCs()

GetCs5
SUMMARY Returns the 5th order Spherical Aberration Cs5 in mm

SYNTAX number simulation.GetCs5()

GetDeltaFocus
SUMMARY Returns the increment in focus [Å] for a simulation

of a thru-focus series

SYNTAX number simulation.GetDeltaFocus()

GetDeltaThickness
SUMMARY Returns the increment in thickness [Å] for a thru-

thickness calculation

SYNTAX number simulation.GetDeltaThickness()

GetDivergence
SUMMARY Returns the convergence angle (mrad) for the

calculation

SYNTAX number simulation.GetDivergence()

GetEndFocus
SUMMARY Returns the last focus [Å] for a simulation of a

thru-focus series

SYNTAX number simulation.GetEndFocus()

GetEndThickness
SUMMARY Returns the last thickness [Å] for a thru-thickness

calculation

SYNTAX number simulation.GetEndThickness()

GetExitWave
SUMMARY Returns an image containing the exit wave of the

calculation

SYNTAX image simulation.GetExitWave([number whichExitWave]
[, number nX] [, number nY] [, number zoom])

DESCRIPTION Creates and returns an image of the specified exit
wave for nX by nY unit cells, using a zoom factor,
Defaults are: whichExitWave = 1, nX = 1, nY = 1,
zoom = 1

GetExitWaveModulus
SUMMARY Returns an image containing the modulus of the exit

wave

SYNTAX image simulation.GetExitWaveModulus([number
whichExitWave] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and returns an image of the specified exit
wave modulus for nX by nY unit cells, using a zoom
factor, Defaults are: whichExitWave = 1, nX = 1, nY
= 1, zoom = 1

GetExitWavePhase
SUMMARY Returns an image containing the phase of the exit

wave

SYNTAX image simulation.GetExitWavePhase([number
whichExitWave])

DESCRIPTION Creates and returns an image of the specified exit
wave phase for nX by nY unit cells, using a zoom
factor, Defaults are: whichExitWave = 1, nX = 1, nY
= 1, zoom = 1

GetFocus
SUMMARY Returns the focus [Å] for the simulation

SYNTAX number simulation.GetFocus()

GetFocusSpread
SUMMARY Returns the focus [Å] for the simulation

SYNTAX number simulation.GetFocusSpread()

DESCRIPTION The focus spread refers to the effect of the
chromatic aberration of the objective lens and
contributes to the damping of the contrast transfer
function

GetImage
SUMMARY Returns an image containing the calculated simulated

image

SYNTAX image simulation.GetImage([number whichImage] [,
number nX] [, number nY] [, number zoom])

DESCRIPTION Creates and returns an image of the specified
simulated image for nX by nY unit cells, using a
zoom factor, Defaults are: whichImage = 1, nX = 1,
nY = 1, zoom = 1

GetInnerAperture
SUMMARY Returns the inner radius of the objective lens

aperture (1/Å)

SYNTAX number simulation.GetInnerAperture()

GetOpticAxis
SUMMARY Returns the center of the optic axis in tilt angle

(mrad) and azimuthal angle (degrees)

SYNTAX number simulation.GetApertureCenter(number theta,
number phi)

GetOpticAxisHK
SUMMARY Returns the center of the optic axis in (H,K) of the

reciprocal space of the unit cell

SYNTAX void simulation.GetOpticAxisHK(number cH, number
cK)

GetOuterAperture
SUMMARY Returns the radius of the outer objective lens

aperture (1/Å)

SYNTAX number simulation.GetOuterAperture()

DESCRIPTION Equivalent to GetAperture

GetPhaseShift
SUMMARY Returns the phase shift for the phase plate in units

of π

SYNTAX number simulation.GetPhaseShift()

GetPhaseShiftRadius
SUMMARY Returns the radius for the phase plate in units of

1/Å

SYNTAX number simulation.GetPhaseShiftRadius()

GetPhaseShiftRadius2
SUMMARY Returns the outer radius for the phase plate in

units of 1/Å

SYNTAX number simulation.GetPhaseShiftRadius2()

GetPotential
SUMMARY Returns an image containing the calculated 2D

projected potential

SYNTAX image simulation.GetPotential([number
whichPotential] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and returns an image of the specified
potential for nX by nY unit cells, using a zoom
factor, Defaults are: whichPotential = 1, nX = 1, nY
= 1, zoom = 1

GetStartFocus
SUMMARY Returns the starting focus (Å) for a thru-focus

series

SYNTAX number simulation.GetStartFocus()

GetStartThickness
SUMMARY Returns the starting thickness (Å) for a thru-

thickness series

SYNTAX number simulation.GetStartThickness()

GetThickness
SUMMARY Returns the thickness (Å) for the simulation

SYNTAX number simulation.GetThickness()

GetTilt
SUMMARY Returns the tilt angle of the specimen in mrad and

the azimuthal angle of specimen tilt with respect to
the horizontal axis in degrees

SYNTAX void simulation.GetTilt(number theta, number phi)

GetTiltAngle
SUMMARY Returns the tilt angle of the specimen in mrad

SYNTAX number simulation.GetTiltAngle()

GetTiltDirection
SUMMARY Returns the azimuthal angle of specimen tilt with

respect to the horizontal axis in degrees

SYNTAX number simulation.GetTiltDirection()

GetTiltH
SUMMARY Gets the h value of the center of laue circle

(specimen tilt)

SYNTAX number simulation. GetTiltH()

GetTiltHK
SUMMARY Returns the center of Laue circle in (H,K) of the

reciprocal space of the unit cell

SYNTAX void simulation.GetTiltHK(number cH, number cK)

GetTiltK
SUMMARY Gets the k value of the center of laue circle

(specimen tilt)

SYNTAX number simulation.GetTiltK()

GetVibration
SUMMARY Gets the vibration of the “specimen” along x and y

SYNTAX void simulation.GetVibration(number variable vX,
numberVariable vY)

GetVibrationX
SUMMARY Gets the vibration of the “specimen” along x

SYNTAX number simulation.GetVibrationX()

GetVibrationY
SUMMARY Gets the vibration of the “specimen” along y

SYNTAX number simulation.GetVibrationY()

GetVoltage
SUMMARY Returns the voltage of the microscope for the

simulation (kV)

SYNTAX number simulation.GetVoltage()

LoadExitWave
SUMMARY Returns an image containing the exit wave of the

calculation

SYNTAX image simulation.LoadExitWave([number
whichExitWave])

DESCRIPTION Returns the specified exit wave as an image. Default
value for which exit wave if not specified is 1. The
image will have the sampling of the simulation and
the angle of the unit cell.

LoadExitWaveModulus
SUMMARY Returns an image containing the modulus of the exit

wave

SYNTAX image simulation.LoadExitWaveModulus([number
whichExitWave])

DESCRIPTION Returns the specified exit wave modulus as an image.
Default value for which exit wave if not specified
is 1. The image will have the sampling of the
simulation and the angle of the unit cell.

LoadExitWavePhase
SUMMARY Returns an image containing the phase of the exit

wave

SYNTAX image simulation.LoadExitWavePhase([number
whichExitWave])

DESCRIPTION Returns the specified exit wave phase. Default value
for which exit wave if not specified is 1. The exit
wave phase image will have the sampling of the
simulation and the angle of the unit cell.

LoadImage
SUMMARY Returns an image containing the calculated simulated

image

SYNTAX image simulation.LoadImage([number whichImage])

DESCRIPTION Returns the specified image. Default value for which
image if not specified is 1. The image will have the
sampling of the simulation and the angle of the unit
cell.

LoadPotential
SUMMARY Returns an image containing the calculated 2D

projected potential

SYNTAX image simulation.LoadPotential([number
whichPotential])

DESCRIPTION Returns the specified potential as an image. Default
value for which potential if not specified is 1. The
image will have the sampling of the simulation and
the angle of the unit cell.

PropagateWave
SUMMARY Calculates a 3D complex volume containing the wave

function at each slice for the current simulation up
to a given thickness.

SYNTAX Image3D simulation.PropagateWave(number thickness)

DESCRIPTION Returns a 3D complex volume containing the wave
function up to a given thickness. In order to see
the wave, the volume image must be displayed in the
script, such as Image3D wave =
simulation.PropagateWave(200) ; wave.show() ;

SetAperture
SUMMARY Sets the outer objective lens aperture (1/Å)

SYNTAX void simulation.SetAperture(number)

SetApertureAngle
SUMMARY Sets the outer objective lens aperture in mradians

SYNTAX void simulation.SetApertureAngle(number)

SetApertureCenter
SUMMARY Sets the center of the objective lens aperture

SYNTAX void simulation.SetApertureCenter(number theta,
number phi)

SetApertureHK
SUMMARY Sets the center of the objective lens aperture in

(H,K) of the reciprocal space of the unit cell

SYNTAX void simulation.SetApertureHK(number cH,Number cK)

SetCs
SUMMARY Sets the Spherical Aberration Cs in mm

SYNTAX void simulation.SetCs(number)

SetCs5
SUMMARY Sets the 5th order Spherical Aberration Cs5 in mm

SYNTAX void simulation.SetCs5(number)

SetDeltaFocus
SUMMARY Sets the Incremental focus (Å) for a thru-focus

series

SYNTAX void simulation.SetDeltaFocus(number)

SetDeltaThickness
SUMMARY Sets the incremental thickness (Å) for a thru-

thickness series

SYNTAX void simulation.SetDeltaThickness(number)

SetDivergence
SUMMARY Sets the convergence angle (mrad) for the

calculation

SYNTAX void simulation.SetDivergence(number)

SetEndFocus
SUMMARY Sets the ending value for focus [Å] in a thru-focus

series

SYNTAX void simulation.SetEndFocus(number)

SetEndThickness
SUMMARY Sets the ending value for thickness [Å] in a thru-

thickness series

SYNTAX void simulation.SetEndFocus(number)

SetFocus
SUMMARY Sets the focus (Å) for the calculation

SYNTAX void simulation.SetFocus(number)

SetFocusSpread
SUMMARY Sets the focus Spread (Å) associated with the

chromatic aberration of the objective lens for the
calculation

SYNTAX void simulation.SetFocusSpread(number)

SetInnerAperture
SUMMARY Sets the inner objective lens aperture (1/Å)

SYNTAX void simulation.SetInnerAperture(number)

SetOpticAxis
SUMMARY Sets the center of the optic axis in tilt angle

(mrad) and azimuthal angle (degrees)

SYNTAX void simulation.SetOpticAxis(number theta , number
phi)

SetOpticAxisHK
SUMMARY Sets the center of the optic axis in (H,K) of the

reciprocal space of the unit cell real

SYNTAX void simulation.SetOpticAxisHK(number cH, number
cK)

SetOuterAperture
SUMMARY Sets the outer objective lens aperture (1/Å)

SYNTAX void simulation.SetOuterAperture(number)

SetPhaseShift
SUMMARY Sets the phase shift for the phase plate in units of

π

SYNTAX void simulation.SetPhaseShift(number)

SetPhaseShiftRadius
SUMMARY Sets the radius for the phase plate in units of 1/Å

SYNTAX void simulation.SetPhaseShiftRadius(number)

SetPhaseShiftRadius2
SUMMARY Sets the outer radius for the phase plate in units

of 1/Å

SYNTAX void simulation.SetPhaseShiftRadius(number)

DESCRIPTION If the second radius is set greater than the
PhaseShiftRadius, the beams are blocked between
PhaseShiftRadius and PhaseShiftRadius2

SetStartFocus
SUMMARY Sets the starting focus (Å) for a thru-focus series

SYNTAX void simulation.SetStartFocus(number)

SetStartThickness
SUMMARY Sets the starting thickness for a thru-thickness

series

SYNTAX void simulation.SetStartThickness(number)

SetThickness
SUMMARY Sets the thickness (Å) for the calculation

SYNTAX void simulation.SetThickness(number)

SetTiltAngle
SUMMARY Sets the tilt angle of the specimen in mrad

SYNTAX void simulation.SetTiltAngle(number)

SetTiltDirection
SUMMARY Sets the azimuthal angle of specimen tilt with

respect to the horizontal axis in degrees

SYNTAX void simulation.SetTiltDirection(number)

SetTiltH
SUMMARY Sets the h value of the center of laue circle

(specimen tilt)

SYNTAX void simulation.SetTiltH(number)

SetTiltHK
SUMMARY Sets the h,k values of the center of laue circle

(specimen tilt)

SYNTAX void simulation.SetTiltHK(number h,number k)

SetTiltK
SUMMARY Sets the k value of the center of laue circle

(specimen tilt)

SYNTAX void simulation.SetTiltK(number)

SetVibration
SUMMARY Sets the vibration of the “specimen” along x and y

SYNTAX void simulation.SetVibration(number vibX, number
vibY)

SetVibrationX
SUMMARY Sets the vibration of the “specimen” along x

SYNTAX void simulation.SetVibrationX(number)

SetVibrationY
SUMMARY Sets the vibration of the “specimen” along y

SYNTAX void simulation.SetVibrationY(number)

SetVoltage
SUMMARY Sets the voltage of the microscope for the

simulation (kV)

SYNTAX void simulation.SetVoltage(number)

ShowExitWave
SUMMARY Displays a calculated exit wave

SYNTAX void simulation.ShowExitWave([number whichExitWave]
[, number nX] [, number nY] [, number zoom])

DESCRIPTION Creates and displays the specified exit wave for nX
by nY unit cells, using a zoom factor, Defaults are:
whichExitWave = 1, nX = 1, nY = 1, zoom = 1

ShowExitWaveModulus
SUMMARY Displays the modulus of a calculated exit wave

SYNTAX void simulation.ShowExitWaveModulus([number
whichExitWave] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and displays the modulus of the specified
exit wave for nX by nY unit cells, using a zoom
factor, Defaults are: whichExitWave = 1, nX = 1, nY
= 1, zoom = 1

ShowExitWavePhase
SUMMARY Displays the phase of a calculated exit wave

SYNTAX void simulation.ShowExitWavePhase([number
whichExitWave] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and displays the phase of the specified exit
wave for nX by nY unit cells, using a zoom factor,
Defaults are: whichExitWave = 1, nX = 1, nY = 1,
zoom = 1

ShowImage
SUMMARY Displays a calculated image

SYNTAX void simulation.ShowImage([number whichImage] [,
number nX] [, number nY] [, number zoom])

DESCRIPTION Creates and displays the specified image for nX by
nY unit cells, using a zoom factor, Defaults are:
whichImage = 1, nX = 1, nY = 1, zoom = 1

ShowPotential
SUMMARY Displays a calculated 2D projected potential

SYNTAX void simulation.ShowPotential([number
whichPotential] [, number nX] [, number nY] [,
number zoom])

DESCRIPTION Creates and displays the specified exit wave for nX
by nY unit cells, using a zoom factor, Defaults are:
whichPotential = 1, nX = 1, nY = 1, zoom = 1

Example:

// Precession Tilt series
// This is summing over the power-spectrum of the exit wave function
// by spinning the beam in a circle. The beam tilt is theta (30 mrad).
// The increment in the azimuthal angle is dphi (6 degrees)
// A table of HKL values for different thicknesses is shown
// For illustration purposes, a precession image is also calculated

number theta = 30 // The tilt angle in mrad
number phi = 0 // Tilt angle (degrees) with respect to a-axis
number dphi = 6 // increments in tilt angle (degrees)

simulation sim = getsimulation() // Get the simulation

// We are making sure that everything has been calculated and is current
sim.calculateall()

image xw = sim.loadexitwave() // Declare and load the exit wave
image im = sim. loadimage() // Declare and load the image
image sumim = im ; sumim = 0 ; // Declare the sum for the images and zero

image sumps = xw ; sumps = 0 ; // Declare the sum for the powerspectrum
// and zero

OpenResultsWindow()

for(number thickness = 10; thickness <= 100; thickness += 10) {
sim.setthickness(thickness)
number i = 0 // declare and initialize our counter
for(phi = 0 ; phi < 360; phi += dphi) { // loop over the azimuthal angle

sim.settilt(theta,phi) // set the tilt of the specimen
// this is equivalent to the tilting the beam

sim.calculateexitwave() // Calculate the new exit wave
sim.calculateimage() // Calculate the new image
sumim += sim. loadimage() // Add the image to the sum
xw = sim. loadexitwave() // Load the exit wave
xw.fft() // Fourier transform to get the frequency

// complex coefficients
xw *= conjugate(xw) // Set the complex PowerSpectrum

// If we had used xw.ps() to get the
// power spectrum we would have had a real
// image in “real” space

sumps += xw // Add the powerspectrum to the sum
i++ // Keep track of the count
print("phi = "+phi) // Just to know where we are in the loop

}
sumim /= i // Divide by the number of terms in the sum

// Create a rectangular image of size 1024 by 1024 of sampling 0.1 Å (default)
image precessionImage = sim.createimage(sumim,1024)

precessionImage.setname("Image Precession")
precessionImage.show() // Show the summed images

sumps /= i // Divide by the number of terms in the sum
sumps.sqrt() // To compare with the Scattering factors

// Create a rectangular image of size 1024 by 1024 out to gMax = 4 1/Å
// with a convergence angle of 0.2 mrad
image precessionPS = sim.createfrequencyimage(sumps,1024,0.2,4)
precessionPS.setname("Power Spectrum Precession Thickness "+ sim.getthickness())

precessionPS.show() // Show the summed power spectrum
sumps.setname("thickness " + sim.getthickness())
sim.createhkltable(sumps)

}

	Language Syntax
	Types
	Arrays
	Control loops key words
	Library Functions
	Member Functions
	Built-in Implied loop keywords (follows the use in DM and clearly inspired by DM)

	Real Numbers / Integer Numbers
	Declaration
	Operators (operating on numbers), read Integer when appropriate
	Functions (operating on numbers)
	Pre Defined Constants
	Complex Numbers

	Declaration
	Operators
	Functions
	Complex Number Member Functions

	Functions
	Real Images

	Declaration
	Operators
	Library Functions
	Complex Images

	Declaration
	Operators
	Functions
	Built in Image Expressions
	Image Stacks

	Declaration
	Assignment
	Member functions
	Volume Images

	Declaration / Creation
	Assignment
	Creation
	Member Functions
	Image Data Type

	Declaration
	Creating / initializing
	Image Member Functions

	Functions
	Image Creation

	Functions
	Image Management

	Functions
	Image Processing

	Functions
	Image Data Access

	Functions
	Peak Determination

	Functions
	Lattice Determination

	Functions
	Vector

	Operators
	Declaration
	Image Display

	Functions
	Image Selections

	Functions
	Annotations

	Functions
	Strings
	Persistent Notes (mostly not implemented)
	Number Conversions
	Dialogs
	Input/Output
	Movies
	Miscellaneous
	Electron Microscopy Simulation Script Functions

	General Calculation Functions
	Microscope Data Type

	Declaration
	Initializing
	Microscope Class Member Functions
	Simulation Data Type

	Declaration
	Initializing
	Simulation Class Member Functions
	abs
	ac
	acos
	acosh
	AddImage
	AddImageToMovie
	AddPeakList
	AddWindowToMovie
	AdjustAngle
	AdjustSampling
	AiryAi
	AiryBi
	Align
	AlignImages
	AlignTwoImages
	Amplitude
	AnalyzeDiffractogram*
	Angle
	AnnotationType
	AnnularHighpassFilter
	AnnularLowpassFilter
	ApplyAnnularMask
	ApplyCircularMask
	ApplyCosineMask
	ApplyFocusPlate
	ApplyHanningMask
	asin
	asinh
	atan2
	atanh
	Autocorrelate
	BeginFill**
	BesselI
	BesselJ
	BesselK
	BesselY
	Beta
	bgs
	BinomialCoefficient
	BinomialRandom*
	cc
	ccd
	ceiling
	cis
	clip
	CloseMovie
	complex
	complexconjugate
	ComplexModulusSq / cmsq
	conjugate
	ContinueCancelDialog
	Convolve
	Convolute
	Correlate
	cos
	cosh
	CountAnnotations
	CreateArrowAnnotation
	CreateDoubleArrowAnnotation
	CreateComplexImage
	CreateFloatImage
	CreateImage
	CreateLineAnnotation
	CreateNewMovie
	CreateOvalAnnotation
	CreateTableFromImage
	CreateTextAnnotation
	CreateVectorMap
	CrossCorrelate
	CrossCorrelation
	CrossProduct
	DateStamp
	Delay
	DeleteAnnotation
	DeleteImage
	DeselectAnnotation
	Display
	DisplayAsTable
	DisplayAt
	DisplayOnLogScale
	distance
	Doevents
	DotProduct
	EndFill**
	erf
	erfc
	ErrorDialog
	Exit
	exp
	exp1
	exp2
	exp10
	ExpandSelection
	ExponentialRandom
	exprsize
	exprsize3
	extract
	factorial
	FFT
	FillFromProjection**
	FindMaxima
	FindMinima
	FindPattern
	FindPeaks
	FitDoublePeaks
	FitExponentials
	FitGaussians
	FitLattice
	FitParabolas
	FitPeaks
	FlipHorizontal
	FlipVertical
	floor
	Gamma
	GammaP
	GammaQ
	GammaRandom*
	GaussianLowPassFilter
	GaussianHighPassFilter
	GaussianRandom*
	GetAnnotationRect
	GetCalibration
	GetCalibrationUnit
	GetHeight
	GetImage
	GetKey
	GetLattice
	GetName
	GetNamedImage
	GetNumber
	GetNumberedImage
	GetNthAnnotationID
	GetPeakList
	GetPixel
	GetPixelAmplitude
	GetPixelPhase
	GetScale
	GetSelection
	GetSize
	GetSurveyMode
	GetSurveyTechnique
	GetTwoImages
	GetTwoImagesWithPrompt
	GetVoxel
	GetWidth
	GetWindowPosition
	GetWindowSize
	HasLattice
	HasPeaklist
	Height
	Highpass
	Highpassfilter
	HorizontalProjection
	IFFT
	imaginary / imag
	intensity
	Inverse
	Invert
	IsAnnotationSelected
	Laplacian
	LegendrePolynomial
	log
	log1
	log2
	log10
	Lowpass
	Lowpassfilter
	MatrixDeterminant*
	MatrixInverse*
	MatrixMultiply
	MatrixPrint*
	MatrixTranspose
	max
	Maximum*
	mean
	meansquare
	median
	min
	Minimum*
	modsq
	modulus
	MoveAnnotation
	Negate
	NewImage
	norm
	OffsetAnnotation
	OkDialog
	OpenAndSetProgressWindow
	OpenImage
	OpenLogWindow
	OpenResultsWindow
	OpenWithDialog
	OptionDown
	PadWithMean
	PadWithZero
	Pi
	phase
	PhaseCorrelate
	PhaseCorrelation
	PoissonRandom*
	Polar
	Polynomial*
	pow
	pow2
	pow10
	PowerSpectrum
	product*
	PropagateWave
	ps
	RadialAverage
	ReadPeakList
	real
	RealImage
	RealFFT
	Remainder
	Rect
	RemoveCCDDefects
	repeat
	Resize
	RMS
	Rotate
	RotateLeft
	RotateRight
	RotateX
	RotateY
	RotateZ
	round
	SaveImage
	SavePeaks
	SavePeaksWithDialog
	SelectAnnotation
	Set
	SetAnnotationBackground*
	SetAnnotationColor
	SetAnnotationFace*
	SetAnnotationFont
	SetAnnotationJustification*
	SetAnnotationRect
	SetAnnotationSize
	SetBlackWhite
	SetCalibration
	SetCalibrationUnit
	SetImage
	SetDisplayType
	SetImageSpace
	SetLimits
	SetName
	SetPeakList
	SetPixel
	SetPixelAmplitude*
	SetPixelPhase
	SetSelection
	SetScale
	SetSurveyMode
	SetSurveyTechnique
	SetVoxel
	SetWindowPosition
	SetWindowSize
	Sharpen
	Shift
	ShiftAnnotation
	ShiftCenter
	ShiftDown
	ShiftImageFocus
	ShiftOrigin
	show
	ShowImage
	sgn
	sigma
	sin
	sinh
	Smooth
	Sobel
	SpaceDown
	SphericalBesselJ
	SphericalBesselY
	sqrt
	sq
	square
	stdv
	sum
	tan
	tanh
	Templatematch
	TimeBar*
	thf
	throw
	throwstring
	ThresholdFilter
	Transpose
	trunc
	TwoButtonDialog
	UniformRandom*
	update
	UpdateImage
	ValidAnnotation
	variance
	Vectorlength
	VectorMap
	VerticalProjection
	Warp
	wf
	width
	WienerFilter
	x
	y
	CalculateAtomicScatteringFactors
	CalculateExitWave
	CalculateImage
	CalculatePotential
	PropagateWave
	Calculate3DPotential
	CalculateExitWave
	CalculateImage
	CalculatePotential
	CreateFrequencyImage
	CreateImage
	DisplayExitWave
	DisplayExitWaveModulus
	DisplayExitWavePhase
	DisplayImage
	DisplayPotential
	Focus
	GetAperture
	GetApertureAngle
	GetApertureCenter
	GetApertureCenterHK
	GetCs
	GetCs5
	GetDeltaFocus
	GetDeltaThickness
	GetDivergence
	GetEndFocus
	GetEndThickness
	GetExitWave
	GetExitWaveModulus
	GetExitWavePhase
	GetFocus
	GetFocusSpread
	GetImage
	GetInnerAperture
	GetOpticAxis
	GetOpticAxisHK
	GetOuterAperture
	GetPhaseShift
	GetPhaseShiftRadius
	GetPhaseShiftRadius2
	GetPotential
	GetStartFocus
	GetStartThickness
	GetThickness
	GetTilt
	GetTiltAngle
	GetTiltDirection
	GetTiltH
	GetTiltHK
	GetTiltK
	GetVibration
	GetVibrationX
	GetVibrationY
	GetVoltage
	LoadExitWave
	LoadExitWaveModulus
	LoadExitWavePhase
	LoadImage
	LoadPotential
	PropagateWave
	SetAperture
	SetApertureAngle
	SetApertureCenter
	SetApertureHK
	SetCs
	SetCs5
	SetDeltaFocus
	SetDeltaThickness
	SetDivergence
	SetEndFocus
	SetEndThickness
	SetFocus
	SetFocusSpread
	SetInnerAperture
	SetOpticAxis
	SetOpticAxisHK
	SetOuterAperture
	SetPhaseShift
	SetPhaseShiftRadius
	SetPhaseShiftRadius2
	SetStartFocus
	SetStartThickness
	SetThickness
	SetTiltAngle
	SetTiltDirection
	SetTiltH
	SetTiltHK
	SetTiltK
	SetVibration
	SetVibrationX
	SetVibrationY
	SetVoltage
	ShowExitWave
	ShowExitWaveModulus
	ShowExitWavePhase
	ShowImage
	ShowPotential

